Skip to main content
Log in

A low-temperature heat capacity study of natural lithium micas

Heat capacity of zinnwaldite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low-temperature heat capacity of natural zinnwaldite was measured at temperatures from 6 to 303 K in a vacuum adiabatic calorimeter. An anomalous behavior of heat capacity function C p(T) has been revealed at very low temperatures, where this function does not tend to zero. Thermodynamic functions of zinnwaldite have been calculated from the experimental data. At 298.15 K, heat capacity C p(T) = 339.8 J K−1mol−1, calorimetric entropy S o(Т) – S o(6.08) = 329.1 J K−1 mol−1, and enthalpy Н o(Т) − Н o(6.08) = 54,000 J mol−1. Heat capacity and thermodynamic functions at 298.15 K for zinnwaldite having theoretical composition were estimated using additive method of calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Paukov IE, Kovalevskaya YuA, Kiseleva IA, Shuriga TN. Heat capacity and thermodynamic properties of natural annite at low temperatures. Geochem Int. 2006;44:841–5.

    Article  Google Scholar 

  2. Paukov IE, Kovalevskaya YuA, Kiseleva IA, Shuriga TN. Low-temperature thermodynamic properties of natural biotite. Geochem Int. 2007;45:405–8.

    Article  Google Scholar 

  3. Paukov IE, Kovalevskaya YuA, Kiseleva IA, Shuriga TN. Thermodynamic properties of natural lepidolite. Geochem Int. 2007;45:501–5.

    Article  Google Scholar 

  4. Paukov IE, Kovalevskaya YuA, Kiseleva IA, Shuriga TN, Ikorskii VN. Low-temperature heat capacity and thermodynamic parameters of natural polylithionite. Geochem Int. 2007;45:926–30.

    Article  Google Scholar 

  5. Turkin AI, Drebushchak VA, Kovalevskaya YuA, Paukov IE. Low-temperature heat capacity of magnesioferrite, MgFe2O4. J Therm Anal Calorim. 2008;92:717–21.

    Article  CAS  Google Scholar 

  6. Drebushchak VA, Kovalevskaya YuA, Paukov IE, Surkov NV. Low-temperature heat capacity of monoclinic enstatite. J Therm Anal Calorim. 2008;94:493–7.

    Article  CAS  Google Scholar 

  7. Rieder M, Cavazzini G, D’akonov YuS, Frank-Kamenetsky VA, Gottardy G, Guggengeim S, et al. Nomenclature of the micas. Mineral Mag. 1999;63(2):267–79.

    CAS  Google Scholar 

  8. Chukhrov FV, editor. Minerals. Moscow: Nauka; 1992. (in Russian).

    Google Scholar 

  9. Paukov IE, Kovalevskaya YuA, Rahmoun NS, Geiger CA. A low-temperature heat capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si2O18). Am Mineral. 2006;91:35–8.

    Article  CAS  Google Scholar 

  10. Robie RA, Hemingway BS. Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral. 1982;67:470–83.

    CAS  Google Scholar 

  11. Schelleng JH, Raquet CA, Friedberg SA. Heat Capacity of Mn(CH3COO)2·4H2O between 0.4 and 20 K. Phys Rev. 1968;176:708–12.

    Article  CAS  Google Scholar 

  12. Kireev VA. Methods of practical calculations in thermodynamics of chemical reactions (in Russian), vol. 9. Moscow: Nauka; 1970. p. 6–100.

  13. Glushko VP, Gurvich LV, Bergman GA, Veitz IV, Medvedev VA, Khachkuruzov GA, et al., editors. Thermodynamic properties of individual substances (in Russian). Moscow: Nauka; 1982.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Fund of Fundamental Investigations of Russian Academy of Sciences (Grant No. 06-05-64305) and the Integration Interdisciplinary Project No. 81 of the Siberian Division, Russian Academy of Sciences. The authors thank S. Purusova, analyst of the chemical laboratory of N.M. Fedorovsky Russian Institute of Mineral Materials, for the chemical analysis of the studied sample of zinnwaldite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Paukov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paukov, I.E., Kovalevskaya, Y.A., Kiseleva, I.A. et al. A low-temperature heat capacity study of natural lithium micas. J Therm Anal Calorim 99, 709–712 (2010). https://doi.org/10.1007/s10973-009-0210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0210-5

Keywords

Navigation