Skip to main content
Log in

Low-temperature heat capacity of monoclinic enstatite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Synthetic enstatite MgSiO3 was crystallized from a melt, quenched into water, and then annealed at 873 K. The product is the monoclinic polymorph with the unit cell parameters of a=0.9619(7), b=0.8832(3), c=0.5177(4) nm, β=108.27(5)°. Heat capacity was measured from 6 to 305 K using an adiabatic vacuum calorimeter. Thermodynamic functions for clinoenstatite differ by about 5% from those predicted after a thermodynamic model in the literature, but are very close to those measured for orthorhombic enstatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. Boyd and J. L. England, Carnegie Inst. Washing., Yearbook, 64 (1965) 117.

    Google Scholar 

  2. D. Jiang, K. Fujino, N. Tomioka, T. Hosoya and K. Das, J. Miner. Petrol. Sci., 97 (2002) 20.

    CAS  Google Scholar 

  3. J. M. Jackson, S. V. Sinogeikin, M. A. Carpenter and J. D. Bass, Amer. Mineral., 89 (2004) 239.

    CAS  Google Scholar 

  4. N. Shimobayashi and M. Kitamura, Phys. Chem. Miner., 18 (1991) 153.

    Article  CAS  Google Scholar 

  5. K. K. Kelley, J. Am. Chem. Soc., 65 (1943) 339.

    Article  CAS  Google Scholar 

  6. K. M. Krupka, R. A. Robie, B. S. Hemingway, D. M. Kerrick and J. Ito, Am. Miner., 70 (1985) 249.

    CAS  Google Scholar 

  7. K. M. Krupka, B. S. Hemingway, R. A. Robie and D. M. Kerrick, Am. Miner., 70 (1985) 261.

    CAS  Google Scholar 

  8. S. K. Saxena, N. Chatterjee, Y. Fei and G. Shen, Thermodynamic Data on Oxides and Silicates. An Assessed Data Set Based on Thermochemistry and High Pressure Phase Equilibrium, Springer-Verlag, Berlin 1993.

    Google Scholar 

  9. P. F. Shi, Z. R. Zhang, S. K. Saxena and B. Sundman, Calphad, 18 (1994) 47.

    Article  CAS  Google Scholar 

  10. H.-J. Huhn, J. Thermal Anal., 33 (1988) 909.

    Article  Google Scholar 

  11. C. A. d’Azevedo, F. M. S. Garrido and M. E. Medeiros, J. Therm. Anal. Cal., 83 (2006) 649.

    Article  CAS  Google Scholar 

  12. V. Ramirez-Valle, M. C. Jimenez de Haro, M. A. Aviles, L. A. Perez-Maqueda, A. Duran, J. Pascual and J. L. Perez-Rodriguez, J. Therm. Anal. Cal., 84 (2006) 147.

    Article  CAS  Google Scholar 

  13. V. D. Nikitin, Izvestija Sectora Fiz.-Khim. Analiza, 16 (1948) 29 (in Russian).

    CAS  Google Scholar 

  14. J. Ito, Geophys. Res. Lett., 2 (1975) 533.

    Article  CAS  Google Scholar 

  15. I. E. Paukov, Yu. A. Kovalevskaya, N. S. Rahmoun and C. A. Geiger, Am. Miner., 91 (2006) 35.

    Article  CAS  Google Scholar 

  16. I. E. Paukov, I. A. Belitzky and Yu. A. Kovalevskaya, J. Chem. Thermodyn., 33 (2001) 1687.

    Article  CAS  Google Scholar 

  17. V. G. Bessergenev, Yu. A. Kovalevskaya, L. G. Lavrenova and I. E. Paukov, J. Therm. Anal. Cal., 75 (2004) 331.

    Article  CAS  Google Scholar 

  18. E. V. Boldyreva, V. A. Drebushchak, I. E. Paukov, Yu. A. Kovalevskaya and T. N. Drebushchak, J. Therm. Anal. Cal., 77 (2004) 607.

    Article  CAS  Google Scholar 

  19. E. V. Boldyreva, V. A. Drebushchak, T. N. Drebushchak, I. E. Paukov, Yu. A. Kovalevskaya and E. S. Shutova, J. Therm. Anal. Cal., 73 (2003) 409.

    Article  CAS  Google Scholar 

  20. T. Ashida, S. Kume, E. Ito and A. Navrotsky, Phys. Chem. Miner., 16 (1988) 239.

    Article  CAS  Google Scholar 

  21. A. I. Turkin, V. A. Drebushchak, Yu. A. Kovalevskaya and I. E. Paukov, J. Therm Anal. Cal., 92 (2008) 717.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drebushchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drebushchak, V.A., Kovalevskaya, Y.A., Paukov, I.E. et al. Low-temperature heat capacity of monoclinic enstatite. J Therm Anal Calorim 94, 493–497 (2008). https://doi.org/10.1007/s10973-007-8443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8443-7

Keywords

Navigation