Skip to main content
Log in

Ni olivine: thermal behavior of liebenbergite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The synthetic samples of nickel olivine were measured in the temperature range 100–630 K by the X-ray powder diffraction method. Temperature dependencies of molar volumes and coefficients of bulk thermal expansion of liebenbergite were determined. Interpolation and extrapolation of the experimental data were performed by the procedure based on the Debye–Mie–Gruneisen theory of solid body in the range from 50 to 2000 K, and the Gruneisen coefficient and Debye temperature were calculated. Heat capacity and its behavior in accordance with temperature were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akiyama K, Nagano I, Shida M, Ota S. Thermal barrier coating material. United States Patent. 2009; Patent No: US 7,622,411 B2.

  2. Bass JD, Weidner DJ, Hamaya N, Ozima M, Akimoto S. Elasticity of the olivine and spinel polymorphs of Ni2SiO4. Phys Chem Miner. 1984;10(261):272.

    Google Scholar 

  3. Boström D. Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. Am Miner. 1987;72:965–72.

    Google Scholar 

  4. Brown G. The crystal chemistry of the olivines. Ph.D. thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia; 1970.

  5. Burns R. Site preferences of Ni2+ and Co2+ in clinopyroxenes roxenes and olivine: limitations of the statistical approach. Chem Geol. 1972;9:67–73.

    Article  CAS  Google Scholar 

  6. Deer W, Howie R, Zussman J. An introduction to the rock-forming minerals. 2nd ed. Harlow: Longman; 1992. ISBN 0-582-30094-0.

    Google Scholar 

  7. Doroshev A, Kuznetsov G, Galkin V. The calculation of Gruneisen coefficient and characteristic Debye temperature from the data on thermal expansion and capacity. Zhurnal Fizicheskoi Khimii. 1988;LXII 3:823–5.

    Google Scholar 

  8. Frost DJ. The structure and sharpness of the (Mg, Fe)2SiO4 phase transformations in the transition zone. Earth Planet Sci Lett. 2003;216:313–28.

    Article  CAS  Google Scholar 

  9. Galkin VM, Doroshev AM, Babich YV. Thermal expansion of coesite. Geokhimiya. 1987;N11:1645–6.

    Google Scholar 

  10. Galkin V, Gartvich Y. Thermal expansion and evaluation ion of almandine heat capacity. J Therm Anal Calorim. 2015;122(3):1239–44.

    Article  CAS  Google Scholar 

  11. Galkin V, Kuznetsov G, Turkin A. Thermal expansion of ZnSiO3 high-pressure phases. Phys Chem Miner. 2007;34(6):377–81.

    Article  CAS  Google Scholar 

  12. Hakli TA, Wright TL. The fractionation of nickel between olivine and augite as a geothermometer. Geochim Cosmochim Acta. 1967;31(5):877–84.

    Article  CAS  Google Scholar 

  13. Henderson CMB, Redfern SAT, et al. Composition and temperature dependence of cation ordering in Ni–Mg olivine solid solutions: a time-of-flight neutron powder diffraction and EXAFS study. Am Mineral. 2001;86:1170–87.

    Article  CAS  Google Scholar 

  14. Hirschman M. Thermodynamics of multicomponent olivines and the solution properties of (Ni, Mg, Fe)2SiO4 and (Ca, Mg, Fe)2SiO4 olivines. Am Miner. 1991;76:1232–48.

    Google Scholar 

  15. Koshlyakova NN, Zubkova NV, et al. Crystal chemistry of vanadate garnets from old metallurgical slags Lavrion, Greece. Neues Jahrbuch für Mineralogie - Abhandlungen: J Mineral Geochem. 2017;194:19–25.

    Article  CAS  Google Scholar 

  16. Kuskov OL, Fabrichnaya OB. Phase diagrams of binary systems Mg2SiO4–Co2SiO4 and Fe2SiO4–Ni2SiO4 at P-T parameters of the upper mantle. Geochem J Russ Acad Sci. 1985;11:1551–66.

    Google Scholar 

  17. Lager GA, Meagher EP. High temperatures structural study of six olivines. Am Miner. 1978;63:365–77.

    CAS  Google Scholar 

  18. Lieberman RC. Elasticity of olivine (a), beta (/), spinel (y) polymorphisms of germanates and silicates. Geophys J R Astron Soc. 1975;42:899–929.

    Article  Google Scholar 

  19. Ma CB. Phase equilibria and crystal chemistry in the system SiO2–NiO–NiAl2O4. Ph.D. thesis, Harvard University, Cambridge, Massachusetts; 1972.

  20. Ma CB. New orthorhombic phases on the join NiAl2O4 (spinel analog)–Ni2SiO4 (olivine analog): stability and implications to mantle mineralogy. Contrib Miner Petrol. 1974;45(3):257–79.

    Article  CAS  Google Scholar 

  21. Matsui Y, Syono Y. Unit cell dimensions of some synthetic olivine group solid solutions. Geochem J. 1968;2:51–9.

    Article  CAS  Google Scholar 

  22. Matsukage K, Nishihara Y, Karato S. Seismological signature of chemical differentiation of earths upper mantle. J Geophys Res. 2005;110(B12305):1–18.

    Google Scholar 

  23. Miller ML, Ribbe PH. Methods for determination of composition and intracrystalline cation distribution in Fe–Mn Fe–Ni silicate olivines. Am Miner. 1985;70:723–8.

    CAS  Google Scholar 

  24. Navrotsky A. Ni2SiO4 enthalpy of the olivine-spinel transition by solution calorimetry at 713 °C. Earth Planet Sci Lett. 1973;19:471–5.

    Article  CAS  Google Scholar 

  25. Okada Y, Tokumaru Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys. 1984;56:314.

    Article  CAS  Google Scholar 

  26. O’Neil HSC. Free energies of formation of NiO, CoO Ni2SiO4 and Co2SiO4. Am Miner. 1987;72:3–4.

    Google Scholar 

  27. Ozima M. Growth of nickel olivine single crystals by the flux method. J Cryst Growth. 1976;33(1):193–5.

    Article  CAS  Google Scholar 

  28. Rajamani V, Brown GE, Prewitt CE. Cation ordering in Ni–Mg olivine. Am Miner. 1975;60:292–9.

    CAS  Google Scholar 

  29. Robie RA, Hemingway BS. Heat capacity and entropy of Ni2SiO4-olivine from 5 to 1000 K and heat capacity of Co2SiO4 from 360 to 1000 K. Am Miner. 1984;69:1096–101.

    CAS  Google Scholar 

  30. Ringwood AE. Melting relationships of Ni–Mg olivines and some geochemical implications. Geochim Cosmochim Acta. 1956;10:297–303.

    Article  CAS  Google Scholar 

  31. Ringwood AE. Prediction and confirmation of olivine—spinel transformation in Ni2SiO4. Geochim Cosmochim Acta. 1962;26:457–69.

    Article  CAS  Google Scholar 

  32. Tredoux M, Zaccarini F, Garuti G, Miller D. Phases in the Ni–Sb–As system which occur in the Bon Accord oxide body, Bar-berton greenstone belt, South Africa. Mineral Mag. 1982;80:187–98.

    Article  CAS  Google Scholar 

  33. Vokurka K, Rieder M. Thermal expansion and excess volumes of synthetic olivines on the Mg2SiO4–Ni2SiO4 Join. Neue Jahrb Miner Monatshefte. 1987; 3:97–106.

    Google Scholar 

  34. Watanabe H. Thermochemical properties of synthetic high-pressure compounds relevant to the earth’s mantle. In: Akimoto S, Manghnani MH, editors. High-pressure research in geophysics. Tokyo: Center for Academic Publications; 1982. p. 441–64.

    Chapter  Google Scholar 

  35. Xiaofei P, Lange R, Moore G. A comparison of olivine-melt thermometers based on DMg and DNi. The effects of melt composition, temperature, pressure with applications to MORBS and hydrous arc basalts. Am Miner. 2017;102:4.

    Google Scholar 

  36. Zahn A, Schreiter P. Lattice constants and site preference in the system Ni2SiO4–Co2SiO4. Cryst Res Technol. 1988;23(1):69–75.

    Article  CAS  Google Scholar 

  37. Zhang Y, Sun Q, Geng J. Olivine thermal diffusivity influencing factors. J Therm Anal Calorim. 2018;132(1):7–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tolstyh O. for the help in measurements and Kuznetsov G. for the fruitful cooperation in calculations. This work was supported by the Russian Foundation for Basic Research (№ 0330-2016-0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliya Gartvich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gartvich, Y., Galkin, V. Ni olivine: thermal behavior of liebenbergite. J Therm Anal Calorim 136, 2333–2339 (2019). https://doi.org/10.1007/s10973-018-7859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7859-6

Keywords

Navigation