Skip to main content
Log in

Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4 · H2O) precursor in N2 atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of synthetic serrabrancaite (MnPO4 · H2O) was studied in N2 atmosphere using TG-DTG-DTA. Thermal analysis results indicate that the decomposition occurs in two stages, which are assigned to the dehydration and the reduction processes and the final product is Mn2P2O7. X-ray powder diffraction, FT-IR and FT-Raman techniques were used for identification of the solid decomposition product. The decomposition kinetics analysis of MnPO4 · H2O was performed under non-isothermal condition through isoconversional methods of Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). The dependences of activation energies on the extent of conversions are observed in the dehydration and the reduction reactions, which could be concluded the “multi-step” processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jouini A, Gâcon JC, Ferid M, Trabelsi-Ayadi M. Luminescence and scintillation properties of praseodymium poly and diphosphates. Opt Mater. 2003;24:175–80.

    Article  CAS  Google Scholar 

  2. Kitsugi T, Yamamuro T, Nakamura T, Oka M. Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. Biomaterials. 1995;16:1101–7.

    Article  CAS  Google Scholar 

  3. Jian-Jiang B, Dong-Wan K, Kug Sun H. Microwave dielectric properties of Ca2P2O7. J Eur Ceram Soc. 2003;23:2589–92.

    Article  CAS  Google Scholar 

  4. Martinelli JR, Sene FF, Gomes L. Synthesis and properties of niobium barium phosphate glasses. J Non-Cryst Solids. 2000;263:299.

    Article  Google Scholar 

  5. Carmen P, Josefina P, Regino SP, Caridad RV, Natalia S. Crystal growth, structure, and magnetic properties of a new polymorph of Fe2P2O7. Chem Mater. 2003;15:3347–51.

    Article  CAS  Google Scholar 

  6. Marcu I-C, Sandulescu I, Yves Schuurman Y, Millet J-MM. Mechanism of n-butane oxidative dehydrogenation over tetravalent pyrophosphates catalysts. Appl Catal A. 2008;334;207–16.

    Article  CAS  Google Scholar 

  7. Boyle FW Jr, Lindsay WL. Diffraction patterns and solubility products of several divalent manganese phosphate. Soil Sci Soc Am J. 1985;49:761–6.

    CAS  Google Scholar 

  8. Boyle FW Jr, Lindsay WL. Manganese phosphate equilibrium relationships in soils. Soil Sci Soc Am J. 1986;50:588–93.

    Google Scholar 

  9. Bagieu-Beucher M. Structure cristalline du polyphosphate de manganèse trivalent Mn(PO3)3. Acta Crystallogr. 1978;B34:1443–6.

    CAS  Google Scholar 

  10. Lightfoot P, Cheetham AK, Sleight AW. Structure of manganese(3+) phosphate monohydrate by synchrotron X-ray powder diffraction. Inorg Chem. 1987;26:3544–7.

    Article  CAS  Google Scholar 

  11. Nietubyć R, Sobzak E, Attenkofeer KE. X-ray absorption fine structure study of manganese compounds. J Alloys Compd. 2001;328:126–31.

    Article  Google Scholar 

  12. Durif A, Averbuch-Pouchot MT. Structure du diphosphate acide de manganèse(III): MnHP2O7. Acta Crystallogr. 1982;B38:2883–5.

    CAS  Google Scholar 

  13. Massa W, Yakubovich OV, Dimitrova OV. A novel modification of manganese orthophosphate Mn3(PO4)2. Solid State Sci. 2005;7:950–6.

    Article  CAS  Google Scholar 

  14. Olbertz A, Stachel D, Svoboda I, Fuess H. Redetermination of the crystal structures of nickel cyclotetraphosphate, Ni2P4O12 and of cobalt cyclotetraphosphate, Co2P4O12. Z Kristallogr. 1995;210:241–2.

    Article  Google Scholar 

  15. Stefanidis T, Nord AG. Structure studies of thortveitite-like dimanganese diphosphate, Mn2P2O7. Acta Crystallogr. 1984;C40:1995–9.

    CAS  Google Scholar 

  16. El-Bali B, Boukhari A, Glaum R, Gerk M, Maaß K. Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIX Preparation and Structure Determination of SrMn2(PO4)2 and Redetermination of SrMn3(PO4)2. Z Anorg Allg Chem. 2000;626:2557–62.

    Article  CAS  Google Scholar 

  17. Schneider S, Collin RL. Crystal structure of manganese pyrophosphate dihydrate Mn2P2O7·2H2O. Inorg Chem. 1973;12:2136–9.

    Article  CAS  Google Scholar 

  18. Aranda MAG, Attfield JP, Bruque S. Study of manganese phosphate or arsenate hydrates, MnXO4·nH2O (X = P, As), phases and synthesis and structure of the simple, novel salt MnAsO4. Inorg Chem. 1993;32:1925–30.

    Article  CAS  Google Scholar 

  19. Aranda MAG, Bruque S. Characterization of manganese(III) orthophosphate hydrate. Inorg Chem. 1990;29:1334–7.

    Article  CAS  Google Scholar 

  20. Aranda MAG, Bruque S, Attfield JP. Crystal structures and characterization of a new manganese(III) arsenate, MnAsO4.1·2H2O and manganese(II) pyroarsenate, Mn2As2O7. Inorg Chem. 1991;30:2043–7.

    Article  CAS  Google Scholar 

  21. Stojakovic D, Rajic N, Sajic S, Logar NZ, Kaucic V. A kinetic study of the thermal degradation of 3-methylaminopropylamine inside AlPO4-21. J Therm Anal Calorim. 2007;87:337–43.

    Article  CAS  Google Scholar 

  22. Boonchom B, Youngme S, Srithanratana T, Danvirutai C. Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4·H2O-H4 precursor. J Therm Anal Calorim. 2007;91:511–6.

    Article  CAS  Google Scholar 

  23. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  24. Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  25. Boonchom B, Youngme S, Maensiri S, Danvirutai C. Nanocrystalline serrabrancaite (MnPO4·H2O) prepared by a simple precipitation route at low temperature. J Alloys Compd. 2006;454:78–82.

    Article  CAS  Google Scholar 

  26. Witzke T, Wegner R, Doering T, PÖllmann H, Schuckmann W. Serrabrancaite, MnPO4·H2O, a new mineral from the Alto Serra Branca pegmatite, Pedra Lavrada, Paraiba, Brazil. Amer Mineral. 2000;85:847–9.

    CAS  Google Scholar 

  27. Baril M, Assaaoudi H, Butler IS. Pressure-tuning Raman microspectroscopic study of cobalt(II), manganese(II), zinc(II) and magnesium(II) yrophosphate dihydrates. J Mol Struc. 2005;751:168–71.

    Article  CAS  Google Scholar 

  28. Harcharras M, Ennaciri A, Rulmont A, Gilbert B. Vibrational spectra and structures of double diphosphates M2CdP2O7 (M = Li, Na, K, Rb, Cs). Spectrochim Acta. 1997;A53:345–52.

    Google Scholar 

  29. Brouzi K, Ennaciri A, Harcharras M, Capitelli F. Structure and vibrational spectra of a new trihydrate diphosphate, MnNH4NaP2O7·3H2O. J Raman Spectrosc. 2004;35:41–6.

    Article  CAS  Google Scholar 

  30. Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.

    Article  CAS  Google Scholar 

  31. Vlase T, Vlase G, Brita N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  32. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.

    Article  CAS  Google Scholar 

  33. Budrugeac P. The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters. J Therm Anal Calorim. 2007;89:143–51.

    Article  CAS  Google Scholar 

  34. Singh BK, Sharma RK, Garg BS. Kinetics and molecular modeling of biologically active glutathione complexes with lead(II) ions. J Therm Anal Calorim. 2006;84:593–600.

    Article  CAS  Google Scholar 

  35. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  36. Zhang K, Hong J, Cao G, Zhan D, Tao Y, Cong C. The kinetics of thermal dehydration of copper(II) acetate monohydrate in air. Thermochim Acta. 2005;437:145–9.

    Article  CAS  Google Scholar 

  37. Boonchom B, Maensiri S, Danvirutai C. Soft solution synthesis, non-isothermal decomposition kinetics and characterization of manganese dihydrogen phosphate dihydrate Mn(H2PO4)2·2H2O and its thermal transformation products. Mater Chem Phys. 2008;109:404–10.

    Article  CAS  Google Scholar 

  38. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1553–8.

    Article  CAS  Google Scholar 

  39. Boonchom B, Danvirutai C. A simple synthesis and thermal decomposition kinetics of MnHPO4·3H2O rod-like microparticles obtained by spontaneous precipitation route. J Optoelectron Adv Mater. 2008;10:492–9.

    CAS  Google Scholar 

  40. Boonchom B, Danvirutai C. Thermal decomposition kinetics of FePO4·3H2O precursor to synthetize spherical nanoparticles FePO4. Ind Eng Chem Res. 2007;46:9071–6.

    Article  CAS  Google Scholar 

  41. Boonchom B, Danvirutai C. Synthesis of MnNiP2O7 and nonisothermal decomposition kinetics of a new binary Mn0.5Ni0.5HPO4·H2O precursor obtained from a rapid coprecipitation at ambient temperature. Ind Eng Chem Res. 2008;47:5976–81.

    Article  CAS  Google Scholar 

  42. Noisong P, Danvirutai C, Srithanratana T, Boonchom B. Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sci. 2008;10:1598–604.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Chemistry Department, Khon Kaen University for providing research facilities. This work is financially supported by the Thailand Research Fund (TRF) and the Commission on Higher Education (CHE): Research Grant for New Scholar (MRG5280073), Ministry of Science and Technology, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banjong Boonchom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonchom, B., Danvirutai, C. & Thongkam, M. Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4 · H2O) precursor in N2 atmosphere. J Therm Anal Calorim 99, 357–362 (2010). https://doi.org/10.1007/s10973-009-0096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0096-2

Keywords

Navigation