Skip to main content
Log in

Kinetics and molecular modeling of biologically active glutathione complexes with lead(II) ions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lead(II) complexes of reduced glutathione (GSH) of general composition [Pb(L)(X)]·H2O (where L=GSH; X=Cl, NO3, CH3COO, NCS) have been synthesized and characterized by elemental analyses, infrared spectra and electronic spectra. Thermogravimetric (TG) and differential thermal analytical (DTA) studies have been carried out for these complexes. Infrared spectra indicate deprotonation and coordination of cysteinyl sulphur with metal ion. It indicates the presence of water molecule in the complexes that has been supported by TG/DTA. The thermal behaviour of complexes shows that water molecule is removed in first step-followed removal of anions and then decomposition of the ligand molecule in the subsequent steps. Thermal decomposition of all the complexes proceeds via first order kinetics. The thermodynamic activation parameters, such as E*, A, ΔH*, ΔS* and ΔG* have been calculated. The geometry of the metal complexes has been studied with the help of molecular modeling for energy minimization calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DN Kumar BS Garg (2002) J. Therm. Anal. Cal. 69 607 Occurrence Handle1:CAS:528:DC%2BD38Xms1eksrY%3D Occurrence Handle10.1023/A:1019976226610

    Article  CAS  Google Scholar 

  2. R Sharma NK Kaushik (2004) J. Therm. Anal. Cal. 78 953 Occurrence Handle1:CAS:528:DC%2BD2cXhtVGmt7vJ

    CAS  Google Scholar 

  3. PC Jocelyn (1972) Biochemistry of the SH group Academic Press London

    Google Scholar 

  4. A Verma JM Simard JWE Worall VM Rotello (2004) J. Am. Chem. Soc. 126 13987 Occurrence Handle1:CAS:528:DC%2BD2cXot1Kqtb8%3D Occurrence Handle10.1021/ja046572r

    Article  CAS  Google Scholar 

  5. KD Sugden DM Stearns (2000) J. Environ. Path Toxicol. Oncol. 19 215 Occurrence Handle1:CAS:528:DC%2BD3cXmvFKmtbw%3D

    CAS  Google Scholar 

  6. S Grabner J Kosmrlj N Bukovec M Cemazer (2003) J. Inorg. Biochem. 95 105 Occurrence Handle1:CAS:528:DC%2BD3sXjvV2nt74%3D Occurrence Handle10.1016/S0162-0134(03)00092-8

    Article  CAS  Google Scholar 

  7. KP Rice PG Penketh S Krishnamurthy AC Sartorelli (2005) Biochem. Pharmcology 69 1463 Occurrence Handle1:CAS:528:DC%2BD2MXjs1Ckurw%3D Occurrence Handle10.1016/j.bcp.2005.02.016

    Article  CAS  Google Scholar 

  8. WH Ang I Khalaila CS Allardyce L Juillerat-Jeanneret PJ Dyson (2005) J. Am. Chem. Soc. 127 1382 Occurrence Handle1:CAS:528:DC%2BD2MXjtFGmsA%3D%3D Occurrence Handle10.1021/ja0432618

    Article  CAS  Google Scholar 

  9. S Kojima K Nakayama H Ishida (2004) J. Radiation Res. 45 33 Occurrence Handle1:CAS:528:DC%2BD2cXjvFygtrs%3D Occurrence Handle10.1269/jrr.45.33

    Article  CAS  Google Scholar 

  10. B Ning C Wang F Morel S Nowell DL Ratnasinghe W Carter FF Kadlubar B Coles (2004) Pharmacogenetics 14 35 Occurrence Handle1:CAS:528:DC%2BD2cXjs1agsLw%3D Occurrence Handle10.1097/00008571-200401000-00004

    Article  CAS  Google Scholar 

  11. Z Kopanski M Grabowska A Kosiniak-Kamysz J Bertrandt L Kolodziejski W Opoka M Schlegel-Zawadzka (2004) Biofactors 22 79 Occurrence Handle1:CAS:528:DC%2BD2cXhtFGns7zL

    CAS  Google Scholar 

  12. L Struzynska G Sulkowski A Lenkiewicz U Rafalowska (2002) Folia Neuro-pathologica 40 203 Occurrence Handle1:CAS:528:DC%2BD3sXktFKit7k%3D

    CAS  Google Scholar 

  13. K. Haraa, S. Ohmori, M. Nagano, Y. Kim and H. Miura, Proc. ICMR Semin. (1994) (Proceed of Asia-Pacific Symp. on Environ. and Occupational Health), (1993) 99.

  14. G Li Y Jin M Zhao X Liu A Chem Z Xu (2003) Zhongguo Gongye Yixue Zazhi 16 163 Occurrence Handle1:CAS:528:DC%2BD2cXjvFGnurs%3D

    CAS  Google Scholar 

  15. AW Coats JP Redfern (1964) Nature 201 68 Occurrence Handle1:CAS:528:DyaF2cXjsFWltA%3D%3D

    CAS  Google Scholar 

  16. J Zsakó (1968) J. Phys. Chem. 72 2406 Occurrence Handle10.1021/j100853a022

    Article  Google Scholar 

  17. PK Singh BS Garg DN Kumar BK Singh (2001) Ind. J. Chem. 40A 139

    Google Scholar 

  18. J Silver MY Hamed IEG Morrison (1985) Inorg. Chim. Acta 107 169 Occurrence Handle1:CAS:528:DyaL28Xhtl2qsA%3D%3D Occurrence Handle10.1016/S0020-1693(00)80699-4

    Article  CAS  Google Scholar 

  19. G Domazetis RJ Magee BD James (1979) J. Organomet. Chem. 173 357 Occurrence Handle1:CAS:528:DyaE1MXlsFyjurY%3D Occurrence Handle10.1016/S0022-328X(00)84791-9

    Article  CAS  Google Scholar 

  20. RM Silverstein OG Bassler TC Morrill (1974) Spectrophometric identification of organic compounds Wiley New York 108

    Google Scholar 

  21. H Shindo TL Brown (1965) J. Am. Chem. Soc. 87 1904 Occurrence Handle1:CAS:528:DyaF2MXoslCqtQ%3D%3D Occurrence Handle10.1021/ja01087a013

    Article  CAS  Google Scholar 

  22. GB Deacon RJ Phillips (1980) Coord. Chem. Rev. 33 227 Occurrence Handle1:CAS:528:DyaL3MXjvVOqsw%3D%3D Occurrence Handle10.1016/S0010-8545(00)80455-5

    Article  CAS  Google Scholar 

  23. GB Deacon F Huber RJ Phillips (1985) Inorg. Chem. Acta 104 41 Occurrence Handle1:CAS:528:DyaL2MXlvVKjtbw%3D Occurrence Handle10.1016/S0020-1693(00)83783-4

    Article  CAS  Google Scholar 

  24. K Nakamoto (1978) Infrared and Raman spectra of inorganic and coordination compounds Wiley New York

    Google Scholar 

  25. VB Rana DP Singh P Singh MP Teotia (1981) Transition Met. Chem. 6 36 Occurrence Handle1:CAS:528:DyaL3MXitVWqtLc%3D Occurrence Handle10.1007/BF01143465

    Article  CAS  Google Scholar 

  26. RA Bailey SL Kozak TW Michelsen WN Mills (1971) Coord. Chem. Rev. 6 407 Occurrence Handle1:CAS:528:DyaE3MXlsVGlt7s%3D Occurrence Handle10.1016/S0010-8545(00)80015-6

    Article  CAS  Google Scholar 

  27. CNR Rao (1967) Ultraviolet and visible spectroscopy Butterworth London 190

    Google Scholar 

  28. K Nakamoto SJ McCarthy (1968) Spectroscopy and structure of metal chelate compounds John Wiley and Sons USA

    Google Scholar 

  29. S Akerfeldt G Lovgren (1964) Anal. Biochem. 8 223 Occurrence Handle1:CAS:528:DyaF2cXktVOrt7Y%3D Occurrence Handle10.1016/0003-2697(64)90050-8

    Article  CAS  Google Scholar 

  30. H Bendiab J Meullemeetre MJ Schwing F Vierling (1982) J. Chem. Res. (S) 280

    Google Scholar 

  31. BR Curell (1969) Thermal Analysis Academic Press New York 1185

    Google Scholar 

  32. InstitutionalAuthorNameHyperchem (2005) Release 7.51 Professional version for window, Molecular Modeling system Hyperchem. Inc. Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B.K., Sharma, R.K. & Garg, B.S. Kinetics and molecular modeling of biologically active glutathione complexes with lead(II) ions. J Therm Anal Calorim 84, 593–600 (2006). https://doi.org/10.1007/s10973-005-7156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7156-z

Keywords

Navigation