Skip to main content
Log in

The kinetics of non-isothermal decomposition of the Z/Al(OH)3 mixtures (Z = ZnO or Zn4CO3(OH)6·H2O)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of non-isothermal decomposition of ZnO/Al(OH)3 and Zn4CO3(OH)6·H2O/Al(OH)3 has been studied both for the starting mixtures and for mixtures after co-grinding. The process has been controlled by X-ray diffraction, scanning electron microscopy, thermogravimetry and differential scanning calorimetry under air atmosphere (the heating rates were 5, 10 and 15 °C min−1). The activation energy was calculated using the Friedman analysis and Ozawa–Flynn–Wall analysis. It was shown that both methods gave similar results. It was found that the dehydration activation energy of gibbsite to boehmite in the mixture with ZnO gradually is decreased from 150–170 to 100 kJ mol−1. At the final stage (conversion degree was more than 0.9), the dehydration process converted from kinetic mode into the diffusion mode (the activation energy was 50–70 kJ mol−1). It was established that the activation energy of Zn4CO3(OH)6·H2O/Al(OH)3 decomposition at a conversion degree <0.5 (decomposition of basic zinc carbonate to ZnO) has values 130–170 kJ mol−1. For a conversion degree 0.5–0.9 (dehydration of gibbsite to boehmite), the activation energy amounted to 90–130 kJ mol−1. At the final stage of decomposition (degree of conversion above 0.9), the process occurred in the diffusion mode in which the activation energy amounted to 40–70 kJ mol−1. It was revealed that after co-grinding of the ZnO/Al(OH)3 composition, the dehydration process of activation energy has decreased by 10–20 % compared with the original mixture. After the co-grinding of Zn4CO3(OH)6·H2O/Al(OH)3 mixture, the activation energy has increased by 10–15 %. These facts had been explained by changes in the size and defectiveness of the solid-phase particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lloyd L. Handbook of industrial catalysts. Fundamental and applied catalysis. New York: Springer Science; 2011.

    Book  Google Scholar 

  2. Grabowska H, Zawadzki M, Syper L. Gas phase alkylation of 2-hydroxypyridine with methanol over hydrothermally synthesised zinc aluminate. Appl Catal A. 2006;314(2):226–32.

    Article  CAS  Google Scholar 

  3. Valenzuela MA, Bosch P, Aguilar-Rios G, Montoya A, Schifter I. Comparison between Sol–Gel, coprecipitation and wet mixing synthesis of ZnAl2O4. J Sol–Gel Sci Technol. 1997;8(1–3):107–10.

    CAS  Google Scholar 

  4. Tikhov SF, Potapova YuV, Sadykov VA, Salanov AN, Tsybulya SV, Litvak GS, Melgunova LF. Synthesis and properties of highly porous MeOx/Al2O3/Al composites (Me = Mg, Ca, La, Ti, Al). React Kinet Catal Lett. 2002;77(2):267–75.

    Article  CAS  Google Scholar 

  5. Artamonov VI, Golosman EZ, Yakerson VI, Rubinshtein AM. Properties and activity of zinc chemisorbents on carriers. Bull Acad Sci USSR Div Chem Sci. 1986;5:897–900.

    Article  Google Scholar 

  6. Prokof’ev VYu, Tanygin AV, Gordina NE, Zabrodina NA. Aluminum–calcium based three-component systems with addition of zinc and magnesium compounds for absorption of the hydrochloric acid vapor. Rus J Appl Chem. 2013;86(7):1022–8.

    Article  Google Scholar 

  7. Avvakumov E, Senna M, Kosova N. Soft mechanochemical synthesis: a basis for new chemical technologies. New York: Kluwer Academic Publishers; 2002.

    Google Scholar 

  8. Baláž P. Mechanochemistry in nanoscience and minerals engineering. Berlin: Springer-Verlag; 2008.

    Google Scholar 

  9. Prokof’ev VYu, Il’in AP, Sazanova TV. Mechanical coactivation of hydrargillite and calcium compounds. Inorg Mater. 2000;36(9):899–903.

    Article  Google Scholar 

  10. Prokof’ev VYu, Gordina NE. Comminution and mechanochemical activation in oxide ceramics technology (review). Glass Ceram. 2012;69(1):65–70.

    Article  Google Scholar 

  11. Prokof’ev VYu, Gordina NE. Natural mechanisms of mechanochemical interactions in oxide powders. Glass Ceram. 2014;71(1–2):10–4.

    Article  Google Scholar 

  12. Shackelford JF, Doremus RH, editors. Ceramic and glass materials. Structure, properties and processing. New York: Springer Science; 2008.

    Google Scholar 

  13. Yamaguchi G, Sakamoto K. Effect of dry grinding on gibbsite. Bull Chem Soc Jpn. 1959;32:1364–8.

    Article  CAS  Google Scholar 

  14. Takeshi T, Norio I. Mechanochemical phenomena of gibbsite, bayerite and boehmite by grinding. React Solid. 1989;7:207–17.

    Article  Google Scholar 

  15. Li Zh, Shen X, Feng X, Wang P, Wu Zh. Non-isothermal kinetics studies on the thermal decomposition of zinc hydroxide carbonate. Thermochim Acta. 2005;438(1–2):102–6.

    Article  CAS  Google Scholar 

  16. Liu Y, Zhao J, Zhang H, Zhu Y, Wang Z. Thermal decomposition of basic zinc carbonate in nitrogen atmosphere. Thermochim Acta. 2004;414(2):121–3.

    Article  CAS  Google Scholar 

  17. Hu R-Z, Shi Q-Zh. Thermal analysis kinetics. Beijing: Science Press; 2001.

    Google Scholar 

  18. Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim Acta. 1995;267(1):29–44.

    Article  CAS  Google Scholar 

  19. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355(1–2):35–42.

    Article  CAS  Google Scholar 

  20. Budrugeac P, Homentcovschi D, Segal EJ. Critical considerations on the isoconversional methods. III. On the evaluation of the activation energy from non-isothermal data. J Therm Anal Calorim. 2001;66(2):557–65.

    Article  CAS  Google Scholar 

  21. Baitalow F, Schmidt H-G, Wolf G. Formal kinetic analysis of processes in the solid state. Thermochim Acta. 1999;337(1–2):111–20.

    Article  CAS  Google Scholar 

  22. Yener N, Önal M, Üstünışık G, Sarıkaya Y. Thermal behavior of a mineral mixture of sepiolite and dolomite. J Therm Anal Calorim. 2007;88(3):813–7.

    Article  CAS  Google Scholar 

  23. Yılmaz MS, Kalpaklı Y, Pişkin SJ. Thermal behavior and dehydroxylation kinetics of naturally occurring sepiolite and bentonite. J Therm Anal Calorim. 2013;114(3):1191–9.

    Article  Google Scholar 

  24. Cebulak S, Langier-Kuzniarowa AJ. Some remarks on the methodology of thermal analysis of clay minerals. J Therm Anal Calorim. 1998;53(2):375–81.

    Article  CAS  Google Scholar 

  25. Tao Q, He H, Frost RL, Yuan P, Zhu J. Thermal decomposition of silylated layered double hydroxides. J Therm Anal Calorim. 2010;101(1):153–9.

    Article  CAS  Google Scholar 

  26. Budrugeac P, Muat V, Segal E. Non-isothermal kinetic study on the decomposition of Zn acetate-based sol-gel precursor. Part II. The application of the IKP method. J Therm Anal Calorim. 2007;88(3):699–702.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–24.

    Article  CAS  Google Scholar 

  28. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  29. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Sci B Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  30. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  31. Chen F-X, Fu L, Feng L. Liu Ch-Ch, Ren B-Z. Non-isothermal decomposition kinetics of diosgenin. Rus J Phys Chem. 2013;A87(10):1611–4.

    Article  Google Scholar 

  32. Chen F-X, Zhou C-R, Li G-P. Study on thermal decomposition and the non-isothermal decomposition kinetics of glyphosate. J Therm Anal Calorim. 2012;109(3):1457–62.

    Article  CAS  Google Scholar 

  33. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.

    Article  CAS  Google Scholar 

  34. Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117(40):10162–9.

    Article  CAS  Google Scholar 

  35. Zhao M, Qi Zh, Chen F, Yuea X. Kinetics of non-isothermal decomposition of cinnamic acid. Rus J Phys Chem A. 2014;88(7):1081–4.

    Article  CAS  Google Scholar 

  36. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci B Polym Lett. 1969;7(1):41–6.

    Article  CAS  Google Scholar 

  37. Ekström T, Chatfield C, Wruss W, Maly-Schreiber M. The use of x-ray diffraction peak-broadening analysis to characterize ground Al2O3 powders. J Mater Sci. 1985;20(4):1266–74.

    Article  Google Scholar 

  38. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. Amsterdam: Elsevier Sci Publ Comp; 1980.

    Google Scholar 

Download references

Acknowledgements

The study was carried out at the Research Institute of Thermodynamics and Kinetics of Chemical Processes at Ivanovo State University of Chemistry and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokof’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokof’ev, V.Y., Gordina, N.E. & Smirnov, N.N. The kinetics of non-isothermal decomposition of the Z/Al(OH)3 mixtures (Z = ZnO or Zn4CO3(OH)6·H2O). J Therm Anal Calorim 124, 159–170 (2016). https://doi.org/10.1007/s10973-015-5054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5054-6

Keywords

Navigation