Skip to main content
Log in

Preservice Biology Teachers’ Professional Knowledge: Structure and Learning Opportunities

  • Published:
Journal of Science Teacher Education

Abstract

What learning opportunities in higher education promote the development of content knowledge (CK), pedagogical content knowledge (PCK), and pedagogical knowledge (PK)? In order to investigate this question, a cross-sectional study with a total of 274 German preservice biology teachers (21.5 % male, average age 22.8 years) was conducted in German universities. Preservice teachers were recruited via announcements in teacher education courses. The participation rate amounted to 45 %. Results indicate that CK, PCK, and PK are three unique and separable, but correlated domains of knowledge. Regression analyses show how particular learning opportunities are related to preservice biology teachers’ CK, PCK, and PK. Both (a) the type of teacher education program and (b) the period of university studies are related to CK and PCK. Moreover, (c) additional subjects studied and (d) teaching experience seem relevant for PCK development. Conclusions for teacher education are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abell, S. K. (2007). Research on science teacher knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Anderson, J. R., & Lebière, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14–17, 20–22, 43–46.

  • Ball, D. L., Lubienski, S., & Mewborn, D. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 433–456). New York, NY: Macmillan.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389–407.

    Article  Google Scholar 

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., ... Tsai, Y. M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47, 133–180.

    Article  Google Scholar 

  • Bentler, P. M. (1989). EQS: Structural equations program manual. Los Angeles, CA: BMDP Statistical Software.

    Google Scholar 

  • Blömeke, S., Buchholtz, C., & Bremerich-Vos, A. (2013). Der Zusammenhang institutioneller Merkmale mit dem Wissenserwerb im Lehramtsstudium [How institutional characteristics are connected to the acquisition of knowledge in teacher training]. In S. Blömeke, A. Bremerich-Vos, G. Kaiser, G. Nold, & K. Schwippert (Eds.), Kompetenzen im Studienverlauf: Weitere Ergebnisse zur Deutsch-, Englisch- und Mathematiklehrerausbildung aus TEDS-LT. Münster: Waxmann.

    Google Scholar 

  • Blömeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries: A review of the state of research. ZDM-The International Journal on Mathematics Education, 44, 223–247.

    Article  Google Scholar 

  • Blömeke, S., Felbrich, A., Müller, C., Kaiser, G., & Lehmann, R. (2008). Effectiveness of teacher education. State of research, measurement issues and consequences for future studies. ZDM-The International Journal on Mathematics Education, 40, 719–734.

    Article  Google Scholar 

  • Blömeke, S., Kaiser, G., Döhrmann, M., & Lehmann, R. (2010). Mathematisches und mathematikdidaktisches Wissen angehender Sekundarstufen-I-Lehrkräfte im internationalen Vergleich [Content and pedagogical content knowledge of secondary preservice mathematics teachers: An international comparison]. In S. Blömeke, G. Kaiser, & R. Lehmann (Eds.), TEDS-M 2008: Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich (pp. 197–238). Münster: Waxmann.

    Google Scholar 

  • Blömeke, S., Kaiser, G., & Lehmann, R. (Hrsg.). (2008). Professionelle Kompetenz angehender Lehrerinnen und LehrerWissen, Überzeugungen und Lerngelegenheiten deutscher Mathematikstudierender undreferendareErste Ergebnisse zur Wirksamkeit der Lehrerausbildung. [Professional expertise of preservice teachers—knowledge, beliefs, and learning opportunities of German mathematics students and teacher trainees—First conclusions about the effectiveness of teacher training]. Münster: Waxmann.

  • Blömeke, S., & Suhl, U. (2010). Modellierung von Lehrerkompetenzen: Nutzung unterschiedlicher IRT-Skalierungen zur Diagnose von Stärken und Schwächen deutscher Referendarinnen und Referendare im internationalen Vergleich [Modeling teacher competencies: Using different IRT-scales to diagnose strengths and weaknesses of German teacher trainees in an international comparison]. Zeitschrift für Erziehungswissenschaft (ZfE), 13, 473–505.

    Article  Google Scholar 

  • Blömeke, S., Suhl, U., & Kaiser, G. (2011). Teacher education effectiveness: Quality and equity of future primary teachers’ mathematics and mathematics pedagogical content knowledge. Journal of Teacher Education, 62, 154–171.

    Article  Google Scholar 

  • Borko, H., & Putnam, R. (1996). Learning to teach. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 673–708). New York, NY: MacMillan.

    Google Scholar 

  • Brouwer, N., & Korthagen, F. (2005). Can teacher education make a difference? American Educational Research Journal, 42(1), 153–224.

    Article  Google Scholar 

  • Brunner, M., Anders, Y., Hachfeld, A., & Krauss, S. (2013). The diagnostic skills of mathematics teachers. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project (pp. 229–248). New York, NY: Springer.

    Chapter  Google Scholar 

  • Brunner, M., Kunter, M., Krauss, S., Baumert, J., Blum, W., Dubberke, T., ... Neubrand, M. (2006). Welche Zusammenhänge bestehen zwischen dem fachspezifischen Professionswissen von Mathematiklehrkräften und ihrer Ausbildung sowie beruflichen Fortbildung? [How is the content-specific professional knowledge of mathematics teachers related to their teacher education and inservice training?]. Zeitschrift für Erziehungswissenschaft, 9, 521–544.

    Article  Google Scholar 

  • Buchholtz, N., Kaiser, G., & Blömeke, S. (2014). Die Erhebung mathematikdidaktischen Wissens—Konzeptualisierung einer komplexen Domäne [Measuring pedagogical content knowledge in mathematics—Conceptualizing a complex domain]. Journal für Mathematik-Didaktik, 35, 101–128.

    Article  Google Scholar 

  • Capraro, R. M., Capraro, M. M., Parker, D., Kulm, G., & Raulerson, T. (2005). The mathematics content knowledge role in developing preservice teachers’ pedagogical content knowledge. Journal of Research in Childhood Education, 20, 102–118.

    Article  Google Scholar 

  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Clermont, C. P., Borko, H., & Krajcik, J. S. (1994). Comparative study of the pedagogical content knowledge of experienced and novice chemical demonstrators. Journal of Research in Science Teaching, 31, 419–441.

    Article  Google Scholar 

  • Cortina, K. S., & Thames, M. H. (2013). Teacher education in Germany. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project (pp. 49–62). New York, NY: Springer.

    Chapter  Google Scholar 

  • Doyle, W. (2006). Ecological approaches to classroom management. In C. M. Evertson & C. S. Weinstein (Eds.), Handbook of classroom management: Research, practice, and contemporary issues (pp. 97–125). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Frey, A., Hartig, J., & Rupp, A. A. (2009). An NCME instructional module on booklet designs in large-scale assessments of student achievement: Theory and practice. Educational Measurement: Issues and Practice, 28(3), 39–53.

    Article  Google Scholar 

  • Friedrichsen, P. J., Abdell, S., Pareja, E., Brown, P., Lankford, D., & Volkmann, M. (2009). Does teaching experience matter? Examining biology teachers’ prior knowledge for teaching in an alternative certification program. Journal of Research in Science Teaching, 46, 357–383.

    Article  Google Scholar 

  • Germ, M., Müller, A., & Harms, U. (2009). Application of exercise tasks as generative learning facilities for fostering coherence in biology teacher education. In M. Hammann, A. J. Waarlo, & K. T. Boersma (Eds.), The nature of research in biological education: Old and new perspectives on theoretical and methodological issues (pp. 215–229). Utrecht: CD-beta Press.

    Google Scholar 

  • Gramzow, Y., Riese, J., & Reinhold, P. (2013). Modellierung fachdidaktischen Wissens angehender Physiklehrkräfte [Modelling prospective teachers’ knowledge of physics education]. Zeitschrift für Didaktik der Naturwissenschaften, 19, 7–30.

    Google Scholar 

  • Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. New York, NY: Teacher College Press.

    Google Scholar 

  • Grossman, P. L., Schoenfeld, A. H., & Lee, C. (2005). Teaching subject matter. In L. Darling-Hammond & J. D. Bransford (Eds.), Preparing teachers for a changing world: What teachers should learn and be able to do (pp. 201–231). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Großschedl, J., Harms, U., Glowinski, I., & Waldmann, M. (2014). Erfassung des Professionswissens angehender Biologielehrkräfte: das KiL-Projekt [Assessing preservice biology teachers' professional knowledge: The project KiL]. Der mathematische und naturwissenschaftliche Unterricht (MNU), 67, 457–462.

  • Großschedl, J., Mahler, D., Kleickmann, T., & Harms, U. (2014). Content-related knowledge of biology teachers from secondary schools: Structure and learning opportunities. International Journal of Science Education, 36, 2335–2366.

  • Hartmann, S., Upmeier zu Belzen, A., & Krüger, D. (2014). Kompetenzen der naturwissenschaftlichen Erkenntnisgewinnung als Teil des Professionswissens zukünftiger Lehrerinnen und Lehrer: Erste Ergebnisse einer Längsschnittstudie. [Knowledge acquisition expertise in natural sciences as a part of preservice teachers’ professional knowledge: First results of a cross-sectional study] [Abstract]. In Proceedings of the conference of the Gesellschaft für Empirische Bildungsforschung, Frankfurt (vol 2, p. 563).

  • Hattie, J. A. C., & Hansford, B. C. (1982). Self measures and achievement: Comparing a traditional review of literature with meta-analysis. Australian Journal of Education, 26, 71–75.

    Google Scholar 

  • Heine, C., Briedis, K., Didi, H.-J., Haase, K., & Trost, G. (2006). Bestandsaufnahme von Auswahl- und Eignungsfeststellungsverfahren beim Hochschulzugang in Deutschland und ausgewählten Ländern. [University entrance selection procedures and aptitude tests in Germany and selected countries. A survey]. http://www.his.de/pdf/pub_kia/kia200603.pdf

  • Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeits-Test (Rev.) für 512. Klassen (KFT 512 + R). [A cognitive ability test (revised) for grades 5–12]. Göttingen: Beltz-Testgesellschaft.

  • Herzberg, P. Y., & Brähler, E. (2006). Assessing the big-five personality domains via short forms: A cautionary note and a proposal. European Journal of Psychological Assessment, 22, 139–148.

    Article  Google Scholar 

  • Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39, 372–400.

    Google Scholar 

  • Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42, 371–406.

    Article  Google Scholar 

  • Hu, L. T., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 76–99). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Jüttner, M., Boone, W., Park, S., & Neuhaus, B. J. (2013). Development and use of a test instrument to measure biology teachers’ content knowledge (CK) and pedagogical content knowledge (PCK). Educational Assessment, Evaluation and Accountability, 25, 45–67.

    Article  Google Scholar 

  • Jüttner, M., & Neuhaus, B. J. (2012). Development of items for a pedagogical content knowledge-test based on empirical analysis of pupils’ errors. International Journal of Science Education, 34, 1125–1143.

    Article  Google Scholar 

  • Kleickmann, T., & Anders, Y. (2013). Learning at university. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project (pp. 321–332). New York, NY: Springer.

    Chapter  Google Scholar 

  • Kleickmann, T., Richter, D., Kunter, M., Elsner, J., Besser, M., Kraus, S., & Baumert, J. (2013). Teachers’ content knowledge and pedagogical content knowledge: The role of structural differences in teacher education. Journal of Teacher Education, 64, 90–106.

    Article  Google Scholar 

  • Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). New York, NY: The Guilford Press.

    Google Scholar 

  • Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: Methods and practices (2nd ed.). New York, NY: Springer.

    Book  Google Scholar 

  • König, J., Blömeke, S., Paine, L., Schmidt, W. H., & Hsieh, F.-J. (2011). General pedagogical knowledge of future middle school teachers: On the complex ecology of teacher education in the United States, Germany, and Taiwan. Journal of Teacher Education, 62, 188–201.

    Article  Google Scholar 

  • Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41, 212–218.

    Article  Google Scholar 

  • Krauss, S., Baumert, J., & Blum, W. (2008a). Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: Validation of the COACTIV constructs. ZDM-The International Journal on Mathematics Education, 40, 873–892.

    Article  Google Scholar 

  • Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2008b). Pedagogical content knowledge and content knowledge of secondary mathematics teacher. Journal of Educational Psychology, 100, 716–725.

    Article  Google Scholar 

  • Lee, E., & Luft, J. A. (2008). Experienced secondary science teachers’ representation of pedagogical content knowledge. International Journal of Science Education, 30, 1343–1363.

    Article  Google Scholar 

  • Lersch, R. (2006). Lehrerbildung im Urteil der Auszubildenden. Eine empirische Studie in beiden Phasen der Lehrerausbildung. [Teacher training assessed by the trainees. An empirical study in both stages of teacher training]. In C. Allemann-Ghionda & E. Terhart (Eds.), Kompetenzen und Kompetenzentwicklung von Lehrerinnen und Lehrern (51th supplement of the Zeitschrift für Pädagogik, pp. 164–181). Weinheim: Beltz.

  • Levine, A. (2006). Educating school teachers. http://files.eric.ed.gov/fulltext/ED504144.pdf

  • Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighting the merits. Structural Equation Modeling, 9, 151–173.

    Article  Google Scholar 

  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Dordrecht, NL: Kluwer Academic Publishers.

    Google Scholar 

  • Merzyn, G. (2002). Stimmen zur Lehrerausbildung. Ein Überblick über die Diskussion. [Opinions on teacher training. A discussion overview]. Baltmannsweiler: Schneider Hohengehren.

  • Messick, S. (1995). Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50, 741–749.

    Article  Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (2007). MPlus (Version 5.21) [Computer Software]. Los Angeles, CA: Author.

  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualization of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261–284.

    Article  Google Scholar 

  • Raykov, T. (2004). Behavioral scale reliability and measurement invariance evaluation using latent variable modeling. Behavior Therapy, 35, 299–331.

    Article  Google Scholar 

  • Riese, J., & Reinhold, P. (2012). Die professionelle Kompetenz angehender Physiklehrkräfte in verschiedenen Ausbildungsformen—Empirische Hinweise für eine Verbesserung des Lehramtsstudiums [The professional skills of trainee teachers in physics in different educational programs—Empirical findings on the improvement of teacher education programs]. Zeitschrift für Erziehungswissenschaft (ZfE), 15, 111–143.

    Article  Google Scholar 

  • Schmelzing, S., van Driel, J. H., Jüttner, M., Brandenbusch, S., Sandmann, A., & Neuhaus, B. J. (2013). Development, evaluation, and validation of a paper-and-pencil test for measuring two components of biology teachers’ pedagogical content knowledge concerning the “cardiovascular system”. International Journal of Science and Mathematics Education, 11, 1369–1390.

    Article  Google Scholar 

  • Schmidt, W. H., Tatto, M. T., Bankow, K., Blömeke, S., Cedillo, T., Cogan, L., ... Hsieh, F. (2007). The preparation gap: Teacher education for middle school mathematics in six countries. East Lansing, MI: MSU Center for Research in Mathematics and Science Education.

    Google Scholar 

  • Schreiber, J. B., Stage, F. K., King, J., Nora, A., & Barlow, E. A. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. Journal of Educational Research, 99, 323–337.

    Article  Google Scholar 

  • Secretariat of the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany [KMK]. (2004). Standards für die Lehrerbildung: Bildungswissenschaften [Standards for teacher training in the educational sciences]. http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2004/2004_12_16-Standards-Lehrerbildung.pdf

  • Secretariat of the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany [KMK]. (2008). Ländergemeinsame inhaltliche Anforderungen für die Fachwissenschaften und Fachdidaktiken in der Lehrerbildung [Content requirements for subject-related studies and subject-related didactics in teacher training which apply to all Länder]. http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2004/2004_12_16-Standards-Lehrerbildung.pdf

  • Secretariat of the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany [KMK]. (2013). The education system in the federal republic of Germany 2011/2012: A description of the responsibilities, structures and developments in education policy for the exchange of information in Europe. http://www.kmk.org/fileadmin/doc/Dokumentation/Bildungswesen_en_pdfs/teachers.pdf

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–15.

    Article  Google Scholar 

  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–22.

    Google Scholar 

  • Simon, H. A., & Chase, W. G. (1973). Skill in chess. American Scientist, 61, 394–403.

    Google Scholar 

  • Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180.

    Article  Google Scholar 

  • Tamir, P. (1988). Subject matter and related pedagogical knowledge in teacher education. Teaching and Teacher Education, 4, 99–110.

    Article  Google Scholar 

  • Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher education study in mathematics (TEDS-M), conceptual framework. East Lansing, MI: Michigan State University, International Study Center.

    Google Scholar 

  • Tatto, M. T., & Senk, S. (2011). The mathematics education of future primary and secondary teachers: Methods from the teacher education and development study in mathematics. Journal of Teacher Education, 62, 121–137.

    Article  Google Scholar 

  • Tynjälä, P. (1999). Towards expert knowledge? A comparison between a constructivist and a traditional learning environment in the university. International Journal of Educational Research, 31, 357–442.

    Article  Google Scholar 

  • Van Driel, J. H., Verloop, N., & De Vos, W. (1998). Developing science teachers’ pedagogical content knowledge. Journal of Research in Science Teaching, 35, 673–695.

    Article  Google Scholar 

  • Voss, T., Seiz, J., Hoehne, V., Kunter, M., & Baumert, J. (2014). Die Bedeutung des pädagogisch-psychologischen Wissens von angehenden Lehrkräften für die Unterrichtsqualität. [The importance of pedagogical-psychological knowledge of preservice teachers for the quality of teaching]. Zeitschrift für Pädagogik, 60, 184–201.

  • Wang, J., & Lin, E. (2005). Comparative studies on US and Chinese mathematics learning and the implications for standards-based mathematics teaching reform. Educational Researcher, 34(5), 3–13.

    Article  Google Scholar 

Download references

Acknowledgments

This study is a part of the “Measuring the professional knowledge of preservice mathematics and science teachers’ project” (German acronym: KiL), which is funded by the Leibniz Association (Project No. SAW-2011-IPN-2) and is carried out by the Leibniz Institute for Science and Mathematics Education (IPN) in cooperation with the Psychology for Educators work group at Kiel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Großschedl.

Appendices

Appendix 1: Content Knowledge

Item Example: Knowledge of Evolution

Tick off whether the pairs below are homologous or analog structures.

figure a

Item Example: Knowledge of Genetics and Microbiology

Mice with homozygous black and homozygous brown coat color are crossed. Coat color is transmitted as an autosomal trait; black is dominant.

Select both correct statements for heredity.

figure b

Item Example: Knowledge of Morphology

Tick off which cell structures can be found in all living cells of prokaryotes and eukaryotes (one answer is correct).

figure c

Appendix 2: Pedagogical Content Knowledge

Item Example: Knowledge of Students’ Understanding

In the seventeenth century, van Helmont—a natural scientist—conducted the following experiment. He determined the mass of a willow tree seedling and the dry mass of the flower soil in a flower pot. Then, he watered the willow tree under controlled conditions regularly. After 5 years, he determined the dry mass of the flower soil as well as the dry mass of the willow tree again.

The description of this experiment can be used with the intention to address a particular student’s misconception in the area of plant nutrition. With this, this misconception should be altered by conceptual change into a correct conception.

Describe the misconception held by many students which can be addressed by that experiment.

Possible correct response: “The increase of biomass in plant growth can be attributed to the absorption of organic substances from the soil”.

Item Example: Knowledge of Instructional Strategies for Teaching

Identification keys are means to obtain an overview about the diversity and systematics of living things.

A particular scientific method that is a requirement to use identification keys has to be communicated and practiced with students. Specify the scientific method.

Possible correct response: “observation”

Another scientific method that is necessary to construct identification keys autonomously has to be communicated and practiced with students. Specify the scientific method.

Possible correct response: “(criteria - led) comparison”

Item Example: Knowledge of Assessment

The task below originates from an achievement test:

figure d

Explicate which shortcomings concerning the formulation of the task should be improved before their use in an achievement test.

Possible response for full credit: “(1) A description of what is to be done with or to that task should be added (e.g., ‘Tick off…’). (2) The number of correct answers should be determined (e.g., ‘one answer is correct’). (3) The third answer alternative should be revised, as ‘diffusion’ is neither an organelle nor a component of cells. (4) More than three answer alternatives should be used, in order to decrease guessing probability”.

Item Example: Knowledge of Biology Curriculum

Which of the requirements below is mentioned in the definition of the OECD for scientific literacy? Tick off which answer alternative fits best.

figure e

Appendix 3: Pedagogical Knowledge

Item Example: Knowledge of Students’ Understanding

What is inert knowledge? Please tick off the correct answer.

figure f

Item Example: Knowledge of Instructional Strategies for Teaching

In which situations is direct instruction an appropriate instructional method?

Specifically, direct instruction is appropriate …

(Please tick off “correct” or “wrong” for each answer.)

figure g

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Großschedl, J., Harms, U., Kleickmann, T. et al. Preservice Biology Teachers’ Professional Knowledge: Structure and Learning Opportunities. J Sci Teacher Educ 26, 291–318 (2015). https://doi.org/10.1007/s10972-015-9423-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10972-015-9423-6

Keywords

Navigation