Skip to main content
Log in

Magnetic metamorphosis of structurally enriched hexagonal Tb3+ modified ZnO nanoparticles

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Present study portrays physicochemical investigations of aliovalent rare earth ion Tb3+ substitution of ZnO composition series [Zn(1−x)TbxO NPs, where x = 0, 0.05, 0.10] synthesized by sol-gel route. Rietveld refinement of X-ray diffraction (XRD) profiles of all the compositions revealed that the synthesized NPs exhibit hexagonal wurtzite type crystallinity with space group P63mc without any secondary phases or impurities. TEM images confirmed the formation of nanoscale particles with average particle diameter of 14.65 ± 1.28 nm, 18.39 ± 0.56 nm, 22.13 ± 1.17 nm for x = 0, 0.05, and 0.10, respectively. A red shift was observed in the optical band gap with the doping of Tb3+ ion in a UV-visible study. FTIR spectra showed a bend located at 491 cm−1 belonging to Zn-O stretching vibration, which confirmed the formation of pure and modified ZnO NPs. Pristine ZnO NPs [x = 0] showed negative susceptibility and diamagnetic character, and for the composition x = 0.05, paramagnetic nature was observed. Whereas, room temperature ferromagnetism (RTFM) behavior was observed in Tb3+ modified ZnO NPs [x = 0.10] with the rise in magnetic saturation by increasing doping concentration. Dielectric analysis revealed an increase of the dielectric constant of ZnO NPs with Tb3+-doping due to the formation of oxygen vacancies. AC conductivity increases with increasing Tb3+ content in the composition.

Graphical abstract

Highlights

  • All the compositions exhibit hexagonal wurtzite symmetry.

  • Diamagnetic to ferromagnetic transition was observed due to Tb3+ doping in ZnO.

  • The energy band gap decreases with the intrusion of Tb3+ ions in the ZnO crystal lattice.

  • Dielectric permittivity decreases with increasing Tb3+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

There exist no associated data available.

References

  1. Yarahmadi M, Maleki-Ghaleh H, Mehr ME, Dargahi Z, Rasouli F, Siadati MH (2021) Synthesis and characterization of Sr-doped ZnO nanoparticles for photocatalytic applications. J All Comp 853:157000

    Article  CAS  Google Scholar 

  2. Kumar M, Negi K, Umar A, Chauhan MS (2021) Photocatalytic and fluorescent chemical sensing applications of La-doped ZnO nanoparticles. Chem Pap 75(4):1555–1566

    Article  CAS  Google Scholar 

  3. Bhatia S, Verma N, Kumar R (2017) Morphologically-dependent photocatalytic and gas sensing application of Dy-doped ZnO nanoparticles. J All Compd 726:1274–1285

    Article  CAS  Google Scholar 

  4. Chaki I et al. (2020) Growth and characterization of (Tb, Yb) Co-doping sprayed ZnO thin films. Crystals 10(3):169–169

    Article  CAS  Google Scholar 

  5. Ghosh T et al. (2009) Effect of Cu doping in the structural, electrical, optical, and optoelectronic properties of Sol-Gel ZnO thin films. J Elect Chem Soc 156(4):285–285

    Article  CAS  Google Scholar 

  6. Goel S et al. (2017) Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater Chem Phys 202:56–64

    Article  CAS  Google Scholar 

  7. Han D et al. (2016) Effects of rare earth element doping on the ethanol gas-sensing performance of three-dimensionally ordered macroporous In2O3. RSC Adv 6(51):45085–45092

    Article  CAS  Google Scholar 

  8. Hastir A, Kohli N, Singh RC (2017) Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J Phys Chem Sol 105:23–34

    Article  CAS  Google Scholar 

  9. Jadwisienczak WM et al. (2002) Visible emission from ZnO doped with rare-earth ions. J Elect Mat 31(7):776–784

    Article  CAS  Google Scholar 

  10. Kumar R, Hymavathi B (2017) X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson-Hall and size-strain plot methods. J Asia Ceram Soc 5(2):94–103

    Article  Google Scholar 

  11. Kumar V et al. (2015) The role of oxygen and titanium related defects on the emission of TiO2: Tb3+ nano-phosphor for blue lighting applications. Opt Mater (Amst) 46:510–516

    Article  CAS  Google Scholar 

  12. Lotey GS, Singh J, Verma NK (2013) Room temperature ferromagnetism in Tb3+-doped ZnO dilute magnetic semiconducting nanoparticles. J Mater Sci Mater Elect 24(9):3611–3616

    Article  CAS  Google Scholar 

  13. Mazhdi M, Tafreshi MJ (2020) Gadolinium doping affecting on structural, magnetic and dielectric properties of ZnO nanoparticles. Appl Phys A 126(4):1–8

    Article  CAS  Google Scholar 

  14. Ramu S, Vijayalakshmi RP (2017) Effect of terbium doping on the structural and magnetic properties of ZnS nanoparticles. J Supercond Nov Magn 30(7):1921–1925

    Article  CAS  Google Scholar 

  15. Singh J, Singh RC (2021) Tuning of structural, optical, dielectric and transport properties of Fe-doped ZnO: V system. Mater Sci Semiconductor Process 121:105305

    Article  CAS  Google Scholar 

  16. Vijayaprasath G et al. (2015) Enhancement of ferromagnetic property in rare earth neodymium doped ZnO nanoparticles. Ceram Inter 41(9):10607–10615

    Article  CAS  Google Scholar 

  17. Achehboune M et al. (2021) Microstructural, FTIR and Raman spectroscopic study of Rare earth doped ZnO nanostructures. Mater Tod: Proceed. 53:319–323

  18. Ahmad MP et al. (2019) Particle size effect on the dielectric properties of ZnO nanoparticles. Mater Chem Phys 224:79–84

    Article  CAS  Google Scholar 

  19. Dhupar A, Sharma V, Kumar S, Gaur A, Sharma JK (2021) Role of aluminium concentration on the structural, morphological, and optical properties of ZnS nanoparticles. J Electron Mater 50(12):7174–7187

    Article  CAS  Google Scholar 

  20. Jose LM, Raj RA, Sajan D, Aravind A (2021) Adsorption and photocatalytic activity of biosynthesised ZnO nanoparticles using Aloe Vera leaf extract. Nano Express 2(1):010039

    Article  Google Scholar 

  21. Alani AT, Saadi TM (2021) X-ray analysis by williamson-hall methods of pure and doped ZnO nanoparticles. Annal Rom Soc Cell Bio 25(3): 6836–6845.

  22. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8(4):123–134

    Article  Google Scholar 

  23. Chattopadhyay S et al. (2021) Micro-strain administered SHG intensity enhancement by heavy Ce doping in co-precipitated ZnO nanoparticles. Mater Sci Eng B 266:115041–115041

    Article  CAS  Google Scholar 

  24. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4(2):173–179

    Article  CAS  Google Scholar 

  25. Das S et al. (2018) Defect induced room-temperature ferromagnetism and enhanced dielectric property in nanocrystalline ZnO co-doped with Tb3+ and Co. J Allo Comp 731:591–599

    Article  CAS  Google Scholar 

  26. Das T et al. (2017) Effect of Sr-doping on sinterability, morphology, structure, photocatalytic activity and AC conductivity of ZnO ceramics. J Mater Sci: Mater Elect 28(18):13587–13595

    CAS  Google Scholar 

  27. Devi HF, Devi KT, Singh TD (2020) Synthesis, characterization, optical and electrical properties of citrate mediated terbium doped ZnO nanoparticles for multifunctional applications. Integ Ferr 204(1):81–89

    Article  CAS  Google Scholar 

  28. Dinesha ML et al. (2013) Structural and dielectric properties of Fe doped ZnO nanoparticles, Ind. J Phys 87(2):147–153

    CAS  Google Scholar 

  29. Franco A, Pessoni HVS, Soares MP (2014) Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method. J Magn Magn Mater 355:325–330

    Article  CAS  Google Scholar 

  30. Hassan MM et al. (2015) Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J Indu Eng Chem 21:283–291

    Article  CAS  Google Scholar 

  31. Hitkari G, Singh S, Pandey G (2017) Structural, optical and photocatalytic study of ZnO and ZnO-ZnS synthesized by chemical method. Nano-Str Nano-Obj 12:1–9

    CAS  Google Scholar 

  32. Jin N et al. (2016) Microstructure and luminescence properties of Tb3+ doped ZnO quantum dot. J Nanosci Nanotech 16(4):3592–3596

    Article  CAS  Google Scholar 

  33. Kabongo GL et al. (2014) Microstructural and photoluminescence properties of sol-gel derived Tb3+ doped ZnO nanocrystals. J Allo Compd 591:156–163

    Article  CAS  Google Scholar 

  34. Kumar P et al. (2018) Influence of Li co-doping on structural property of sol-gel derived terbium doped zinc oxide nanoparticles. Mater Char 142:593–601

    Article  CAS  Google Scholar 

  35. Kumar P et al. (2020) Optical and magnetic properties of terbium doped zinc oxide nanoparticles with lithium as charge compensator. Optik 216:164839–164839

    Article  CAS  Google Scholar 

  36. Kumawat A et al. (2021) Temperature dependent photoluminescence in Sol-gel derived Ce doped ZnO nanoparticles. Mater Tod: Proceed 43:2965–2969

    CAS  Google Scholar 

  37. Manikandan A et al. (2017) Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J Allo Compd 723:1155–1161

    Article  CAS  Google Scholar 

  38. Mustapha S et al. (2019) Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv Nat Sci: Nanosci Nanotech 10(4):45013–45013

    Google Scholar 

  39. Ngoepe NM et al. (2018) Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications, Cera. Int 44(14):16999–17006

    CAS  Google Scholar 

  40. Norouzzadeh P et al. (2019) Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. J Mater Sci: Mater Elect 7:1–13

    Google Scholar 

  41. Ntwaeaborwa OM et al. (2017) Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spect Acta Part A: Mol Biomol Spectro 182:42–49

    Article  CAS  Google Scholar 

  42. Pal PP, Manam J (2013) Photoluminescence and thermoluminescence studies of Tb3+ doped ZnO nanorods. Mater Sci Eng B 178(7):400–408

    Article  CAS  Google Scholar 

  43. Saadi H et al. (2020) Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater Res Bull 129:110884–110884

    Article  CAS  Google Scholar 

  44. Singh GP et al. (2021) Room temperature dielectric and optical studies of Cd-doped ZnO nanostructures. Bull Mater Sci 44(3):1–11

    Article  CAS  Google Scholar 

  45. Ungureanu M et al. (2007) Electrical and magnetic properties of RE-doped ZnO thin films. Sup Microstr 42(1-6):231–235

    Article  CAS  Google Scholar 

  46. Ungureanu M et al. (2007) Electrical and magnetic properties of RE-doped ZnO thin films (RE= Gd, Nd). Sup Microstr 42(1-6):231–235

    Article  CAS  Google Scholar 

  47. Vijayaprasath G et al. (2015) Enhancement of ferromagnetic property in rare earth neodymium doped ZnO nanoparticles. Cera Inter 41(9):10607–10615

    Article  CAS  Google Scholar 

  48. Rezlescu N, Rezlescu E (1974) Dielectric properties of copper containing ferrites. Phys Status Solidi 23:575–582. https://doi.org/10.1002/pssa.2210230229

    Article  CAS  Google Scholar 

  49. Mehraj S, Ansari MS (2013) Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: Structural, dielectric and ferromagnetic behavior Phys B Phys Condens Matter 430:106–113. https://doi.org/10.1016/j.physb.2013.08.024

    Article  CAS  Google Scholar 

  50. Zhang H, Wang D, Hu C, Kang X, Liu H (2013) Synthesis and magnetic properties of Sn1−xCoxO2 nanostructures and their application in gas sensing. Sens Actuators B Chem 184:288–294. https://doi.org/10.1016/j.snb.2013.04.085

    Article  CAS  Google Scholar 

  51. Wang X et al. (2021) Sisal-like Sn2+ doped ZnO hierarchical structures: synthesis, growth mechanism, and their application in photocatalysis. Cryst Eng Comm 23(41):7314–7323

    Article  CAS  Google Scholar 

  52. S Wirunchit, P Gansa, W Koetniyom (2021) Synthesis of ZnO nanoparticles by Ball-milling process for biological applications. Mater Today Proceed 47: 3554–3559

  53. Wu Z, Liu XC, Huang JCA (2012) Room temperature ferromagnetism in Tb doped ZnO nanocrystalline films. Jour Mag Mag Mater 324(4):642–644

    Article  CAS  Google Scholar 

  54. Zou WQ et al. (2012) Ferromagnetism in Tb doped ZnO nanocrystalline films. Jour Appl Phys 111(11):113704–113704

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Head, Department of Physics, Chandigarh University, Mohali, India for providing laboratory facilities to carry out experimental work. NA is thankful to Department of Physics, Thapar University, Patiala, India for magnetic characterization. NK is grateful to SAIF, Lab, Panjab University, Chandigarh, India for providing characterization facility.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ST, Methodology: AS, Writing (Original draft): NA, Methodology: AV, Formal analysis and investigation: NKV, Writing (Review and editing): SJ, Co-supervision: SK, Resources for physicochemical characterization: GA, Supervision: NK, Dielectric investigation and analysis: RSP.

Corresponding author

Correspondence to Naveen Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. All procedures performed in studies were in accordance with the ethical standards of the institutional or national research committee or comparable ethical standards.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, N., Jindal, S., Anand, G. et al. Magnetic metamorphosis of structurally enriched hexagonal Tb3+ modified ZnO nanoparticles. J Sol-Gel Sci Technol 103, 108–117 (2022). https://doi.org/10.1007/s10971-022-05811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05811-2

Keywords

Navigation