Skip to main content
Log in

Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Tb-doped ZnO nanoparticles have been synthesized by chemical co-precipitation method. The transmission electron microscopy study reveals the spherical morphology of synthesized nanoparticles with average particle size 14–18 nm. The effect of Tb-doping on structural, optical and magnetic properties has been studied. X-ray diffraction shows that pure and Tb-ZnO nanoparticles exhibit wurtzite structure having hexagonal phase with primitive unit cell. It further reveals that there is no effect of Tb-doping on the X-ray diffraction pattern up to 2 % doping, however, higher doping concentration result in accumulation of Tb on ZnO surface. Photoluminescence spectra reveal that the doping Tb in ZnO changes crystallographic structure generating non-radiative oxygen vacancies. Three emission peaks located around 423, 485 and 515 nm has been observed. Pure ZnO nanoparticles show diamagnetic character, however, Tb-doped ZnO nanoparticles exhibit room temperature ferromagnetism. The correlation between defects generated upon Tb-doping to the observed ferromagnetism, in the synthesized nanoparticles, has been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  CAS  Google Scholar 

  2. J.M.D. Coey, Curr. Opin. Solid State Mater. 10, 83 (2006)

    Article  CAS  Google Scholar 

  3. I. Zutic, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  CAS  Google Scholar 

  4. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  5. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  CAS  Google Scholar 

  6. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 5455 (2000)

    Article  Google Scholar 

  7. C. Liu, F. Yun, H. Morkoç, J. Mater. Sci. Mater. Electron. 16, 555 (2005)

    Article  CAS  Google Scholar 

  8. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  9. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  10. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  CAS  Google Scholar 

  11. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, Semicond. Sci. Technol. 19, R59 (2004)

    Article  CAS  Google Scholar 

  12. W.Q. Zou, C.N. Ge, G. Venkataiah, H.L. Su, H.S. Hsu, J.C.A. Huang, X.C. Liu, F.M. Zhang, Y.W. Du, J. Appl. Phys. 111, 113704 (2012)

    Article  Google Scholar 

  13. M. Ungureanu, H. Schmidt, Q. Xu, H. Wenckstern, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, Superlattices Microstruct. 42, 231 (2006)

    Article  Google Scholar 

  14. M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, K.H. Chae, R. Jayavel, T. Jimbo, J. Appl. Phys. 108, 053904 (2010)

    Article  Google Scholar 

  15. M.H.N. Assadi, Y.B. Zhang, P. Photongkam, S. Li, J. Appl. Phys. 109, 013909 (2011)

    Article  Google Scholar 

  16. G.R. Li, X.H. Lu, C.Y. Su, Y.X. Tong, J. Phys. Chem. C 112, 2927 (2008)

    Article  CAS  Google Scholar 

  17. S. Zhou, K. Potzger, A. Mücklich, F. Eichhorn, M. Helm, W. Skorupa, J. Fassbender, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 5889 (2008)

    Google Scholar 

  18. Z. Wu, X.C. Liu, J.C.A. Huang, J. Magn. Magn. Mater. 324, 642 (2012)

    Article  CAS  Google Scholar 

  19. Y.S. Tan, Z.B. Fang, W. Chen, P.M. He, Chin. Phys. B 19, 097502 (2010)

    Article  Google Scholar 

  20. P.P. Murmu, J. Kennedy, B.J. Ruck, A. Markwitz, G.V.M. Williams, S. Rubanov, Nucl. Instrum. Methods Phys. Res. Sect. B 272, 100 (2012)

    Article  CAS  Google Scholar 

  21. A.S. Pereira, M. Peres, M.J. Soares, E. Alves, A. Neves, T. Monteiro, T. Trindade, Nanotechnology 17, 834 (2006)

    Article  CAS  Google Scholar 

  22. V. Vasyliev, E.G. Villora, M. Nakamura, Y. Sugahara, K. Shimamura, Opt. Express 20, 14460 (2012)

    Article  CAS  Google Scholar 

  23. A. Sharma, S. Dhar, B.P. Singh, T. Kundu, Solid State Commun. 151, 1885 (2011)

    Article  CAS  Google Scholar 

  24. S. Bayan, U. Das, D. Mohanta, Phys. Status Solidi A 207, 1859 (2010)

    Article  CAS  Google Scholar 

  25. S.M. Liu, F.Q. Liu, Z.G. Wang, Chem. Phys. Lett. 343, 489 (2001)

    Article  CAS  Google Scholar 

  26. B.H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)

    Article  CAS  Google Scholar 

  27. G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101, 024317 (2007)

    Article  Google Scholar 

  28. B. Choudhury, A. Choudhury, J. Lumin. 136, 339 (2013)

    Article  CAS  Google Scholar 

  29. B. Choudhury, A. Choudhury, Curr. Appl. Phys. (2013). doi:10.1016/j.cap.2013.02.007

    Google Scholar 

  30. S.M. Liu, F.Q. Liu, H.Q. Guo, Z.H. Zhang, Z.G. Wang, Phys. Lett. A 271, 128 (2000)

    Article  CAS  Google Scholar 

  31. J.P. Liu, E. Fullerton, O. Gutfleisch, D.J. Sellmyer, Nanoscale Magnetic Materials and Applications, 1st edn. (Springer, Heidelberg, 2009)

    Book  Google Scholar 

Download references

Acknowledgments

One of the authors, Gurmeet Singh Lotey, gratefully acknowledges the Department of Science and Technology (DST), Government of India, for awarding him the INSPIRE (Innovation in Science Pursuit for Inspired Research) fellowship to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmeet Singh Lotey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotey, G.S., Singh, J. & Verma, N.K. Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles. J Mater Sci: Mater Electron 24, 3611–3616 (2013). https://doi.org/10.1007/s10854-013-1292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1292-1

Keywords

Navigation