Skip to main content
Log in

A simple method for the synthesis of carboxymethylated wrinkled mesoporous silica nanoparticles and preparation of a WMS-curcumin conjugate

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A simple and practical method for the direct surface carboxymethylation of wrinkled mesoporous silica nanoparticles (WMS-COOH) was developed. The surface carboxymethyl functional groups were easily obtained by reacting the silanol (Si–O–H) groups at the surface of mesoporous silica with chloroacetic acid (ClCH2–COOH) which can be further modified by chemical functionalization. The WMS-COOH nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA). The main objective of this paper is to report this chemical modification method that can be easily adapted to any silica material; the carboxyl groups at the surface of the nanoparticles can therefore be used to prepare a wide range of derivatives or to keep the silica nanoparticles stably dispersed in aqueous solution at different pH ranges, as well as tuning the surface charge of the silica nanoparticles. As a proof of method, the preparation of curcumin-labeled WMS nanoparticles is reported, as an example of the versatility of these carboxymethylated silica nanoparticles.

Graphical abstract

Highlights

  • A direct surface carboxymethylation of wrinkled mesoporous silica (WMS) nanoparticles is reported.

  • This chemical modification method can be easily adapted to carboxymethylate any silica surface.

  • Curcumin-modified WMS nanoparticles were prepared to show the versatility of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang S, Huang X, Chen X, Zheng N (2010) Hollow mesoporous zirconia nanocapsules for drug delivery. Adv Funct Mater 20(15):2442–2447

    Article  CAS  Google Scholar 

  2. Jiang H, Wang T, Wang L, Sun C, Jiang T, Cheng G, Wang S (2012) Development of an amorphous mesoporous TiO2 nanosphere as a novel carrier for poorly water-soluble drugs: effect of different crystal forms of TiO2 carriers on drug loading and release behaviors. Microporous Mesoporous Mater 153(1):124–130

    Article  CAS  Google Scholar 

  3. Zhao P, Wang L, Sun C, Jiang T, Zhang J, Zhang Q, Sun J, Deng Y, Wang S (2012) Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur J Pharm Biopharm 80(3):535–543

    Article  CAS  Google Scholar 

  4. Flood-Garibay JA, Méndez-Rojas MA (2021) Effects of Co-solvent nature and acid concentration in the size and morphology of wrinkled mesoporous silica nanoparticles for drug delivery applications. Molecules 26(14):4186

    Article  CAS  Google Scholar 

  5. Lin H-P, Mou C-Y (2002) Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc Chem Res 35(11):927–935

    Article  CAS  Google Scholar 

  6. Anderson T, Martin E, Odinek JG, Newcomer P (1998) Surfactant-templated silica mesophases formed in water. Chem Mater 10(1):311–321

    Article  CAS  Google Scholar 

  7. Slowing II, Vivero-Escoto JL, Wu C-W, Lin SY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  CAS  Google Scholar 

  8. Maurer-Jones MA, Lin Y-S, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4(6):3363–3373

    Article  CAS  Google Scholar 

  9. Izak-Nau E, Kenesei K, Murali K, Voetz M, Eiden S, Puntes VF, Duschl A, Madarász E (2014) Interaction of differently functionalized fluorescent silica nanoparticles with neural stem- and tissue-type cells. Nanotoxicology 8(sup 1):138–148

    Article  CAS  Google Scholar 

  10. Kwon S, Singh K, Perez A, Neel AA, Kim H-W, Chrzanowski W (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:2041731413503357

    Article  CAS  Google Scholar 

  11. Bharti C, Nagaich U, Pal AK, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124–133

    Article  CAS  Google Scholar 

  12. Polshettiwar V, Cha D, Zhang X, Basset JM (2010) High‐surface‐area silica nanospheres (KCC‐1) with a fibrous morphology. Angew Chem 49(50):9652–9656

    Article  CAS  Google Scholar 

  13. Narayan R, Nayak U, Raichur A, Garg S (2018) Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10(3):118

    Article  CAS  Google Scholar 

  14. Jeelani PG, Mulay P, Venkat R, Ramalingam C (2020) Multifaceted application of silica nanoparticles. a review. Silicon 12(6):1337–1354

    Article  CAS  Google Scholar 

  15. Olivieri F, Castaldo R, Cocca M, Gentile G, Lavorgna M (2021) Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: a critical review. Nanoscale 13(20):9091–9111

    Article  CAS  Google Scholar 

  16. Niculescu VC (2020) Mesoporous silica nanoparticles for bio-applications. Front Mater 7:36

    Article  Google Scholar 

  17. Pavan C, Delle Piane M, Gullo M et al. (2019) The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity? Part Fibre Toxicol 1(32):16

    Google Scholar 

  18. Kawai T, Tsutsumi K (1998) Reactivity of silanol groups on zeolite surfaces. Colloid Polym Sci 276(11):992–998

    Article  CAS  Google Scholar 

  19. Fernández-Lodeiro A, Djafari J, Fernández-Lodeiro J, Duarte MP, Muchagato Mauricio E, Capelo-Martínez JL, Lodeiro C (2021) Synthesis of mesoporous silica coated gold nanorods loaded with methylene blue and its potentials in antibacterial applications. Nanomaterials 11(5):1338

    Article  CAS  Google Scholar 

  20. Kermanian M, Sadighian S, Naghibi M, Khoshkam M (2021) PVP surface-protected silica coated iron oxide nanoparticles for MR imaging application. J Biomater Sci Polym Ed 32(10):1356–1369

    Article  CAS  Google Scholar 

  21. Chen J, Gao C, Zhang Y, Wang T, Qian Y, Yang B, Dong P, Zhang Y (2017) Inorganic nano-targeted drugs delivery system and its application of platinum-based anticancer drugs. J Nanosci Nanotechnol 17(1):1–17

    Article  CAS  Google Scholar 

  22. Sun R, Wang W, Wen Y, Zhang X (2015) Recent advance on mesoporous silica nanoparticles-based controlled release system: intelligent switches open up new horizon. Nanomaterials 5(4):2019–2053

    Article  CAS  Google Scholar 

  23. Gisbert-Garzarán M, Vallet-Regí M (2020) Influence of the surface functionalization on the fate and performance of mesoporous silica nanoparticles. Nanomaterials 10(5):916

    Article  CAS  Google Scholar 

  24. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2-3):132–158

    Article  CAS  Google Scholar 

  25. Sanità G, Carrese B, Lamberti A (2020) Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci 7:587012

    Article  CAS  Google Scholar 

  26. Cheng W, McCown M (1985) Effect of alkyl chain length on surface silanization of silica. J Chromatogr A 318:173–185

    Article  CAS  Google Scholar 

  27. Li HL, Fu AP, Xu DS, Guo, Gui LL, Tang YQ (2002) In situ silanization reaction on the surface of freshly prepared porous silicon. Langmuir 18(8):3198–3202

    Article  CAS  Google Scholar 

  28. Khung YL, Narducci D (2015) Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Adv Colloid Interface Sci 226:166–186

    Article  CAS  Google Scholar 

  29. Ahangaran F, Navarchian AH (2020) Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: a review. Adv Colloid Interface Sci 286:102298

    Article  CAS  Google Scholar 

  30. Olmos D, González-Benito J, Aznar AJ, Baselga J (2003) Hydrolytic damage study of the silane coupling region in coated silica microfibres: PH and coating type effects. J Mater Process Technol 143-144:82–86

    Article  CAS  Google Scholar 

  31. Pape PG (2011) Adhesion promoters. In: Kutz M (ed) Applied plastics engineering handbook. Burlington, USA: Elsevier Science, pp 503–517

  32. Ghafoor S, Ata S (2017) Synthesis of carboxyl-modified Fe3O4@SiO2 nanoparticles and their utilization for the remediation of cadmium and nickel from aqueous solution. J Chil Chem Soc 62(3):3588–3592

    Article  CAS  Google Scholar 

  33. Han L, Sakamoto Y, Terasaki O, Li Y, Che S (2007) Synthesis of carboxylic group functionalized mesoporous silica (CFMSs) with various structures. J Mater Chem 17:1216–1221

    Article  CAS  Google Scholar 

  34. Fiorilli S, Onida B, Bonelli B, Garrone E (2005) In situ infrared study of SBA-15 functionalized with carboxylic groups incorporated by a co-condensation route. J Phys Chem B 109(35):16725–16729

    Article  CAS  Google Scholar 

  35. Barczak M (2019) Functionalization of mesoporous silica surface with carboxylic groups by Meldrum’s acid and its application for sorption of proteins. J Porous Mater 26:291–300

    Article  CAS  Google Scholar 

  36. Duse L, Agel MR, Pinnapireddy SR, Schäfer J, Selo MA, Ehrhardt C, Bakowsky U (2019) Photodynamic therapy of ovarian carcinoma cells with curcumin-loaded biodegradable polymeric nanoparticles. Pharmaceutics 11(6):282

    Article  CAS  Google Scholar 

  37. Silva DS, dos Santos DM, Almeida A, Marchiori L, Campana-Filho SP, Ribeiro SJL, Sarmento B (2018) N-(2-Hydroxy)-propyl-3-trimethylammonium, O-mysristoyl chitosan enhances the solubility and intestinal permeability of anticancer curcumin. Pharmaceutics 10(4):245

    Article  CAS  Google Scholar 

  38. de Oliveira LF, Bouchmella K, Gonçalves KDA;, Bettini J;, Kobarg J;, Cardoso MB (2016) Functionalized silica nanoparticles as an alternative platform for targeted drug-delivery of water insoluble drugs. Langmuir 32(13):3217–3225

    Article  CAS  Google Scholar 

  39. Bollu VS, Barui AK, Mondal SK, Prashar S, Fajardo M, Briones D, Rodríguez-Diéguez A, Patra CR, Gómez-Ruiz S (2016) Curcumin-loaded silica-based mesoporous materials: synthesis, characterization and cytotoxic properties against cancer cells. Mater Sci Eng: C 63:393–410

    Article  CAS  Google Scholar 

  40. Kong Z-L, Kuo H-P, Johnson A, Wu L-C, Chang KLB (2019) Curcumin-loaded mesoporous silica nanoparticles markedly enhanced cytotoxicity in hepatocellular carcinoma cells. Int J Mol Sci 20(12):2918

    Article  CAS  Google Scholar 

  41. Kotcherlakota R, Barui AK, Prashar S, Fajardo M, Briones D, Rodríguez-Diéguez A, Patra CR, Gómez-Ruiz S (2016) Curcumin loaded mesoporous silica: an effective drug delivery system for cancer treatment. Biomater Sci 4(3):448–459

    Article  CAS  Google Scholar 

  42. Gangwar RK, Tomar GB, Dhumale VA, Zinjarde S, Sharma RB, Datar S (2013) Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J Agric Food Chem 61(40):9632–9637.

  43. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529.

    Article  Google Scholar 

  44. Moon D-S, Lee J-K (2012) Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure. Langmuir 28(33):12341–12347

    Article  CAS  Google Scholar 

  45. Flood-Garibay JA, Méndez-Rojas MÁ (2021) Synthesis and characterization of magnetic wrinkled mesoporous silica nanocomposites containing Fe3O4 or CoFe2O4 nanoparticles for potential biomedical applications. Colloids Surf A Physicochem Eng Aspects 615:126236.

  46. Verraest DL, Peters JA, Batelaan JG, van Bekkum H (1995) Carboxymethylation of Inulin. Carbohydr Res 271(1):101–112

    Article  CAS  Google Scholar 

  47. Yu C, Li B (2008) Preparation and characterization of carboxymethyl polyvinyl alcohol-graphite nanosheet composites. Polym Compos 29(9):998–1005

    Article  CAS  Google Scholar 

  48. Imani R, Emami SH, Faghihi S (2015) Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach. J Nanopart Res 17(2):88

    Article  CAS  Google Scholar 

  49. Munaweera, Koneru, Shi Y, Di Pasqua AJJ, Balkus, (2014) Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy. APL Mater 2(11):113315

    Article  CAS  Google Scholar 

  50. Lesiak B, Rangam N, Jiricek P, Gordeev I, Tóth J, Kövér L, Mohai M, Borowicz P (2019) Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front Chem 7 (642).

  51. Alexander S, Gomez V, Barron AR (2016) Carboxylation and decarboxylation of aluminum oxide nanoparticles using bifunctional carboxylic acids and octylamine. J Nanomaterials 2016:1–8

    Article  CAS  Google Scholar 

  52. Hu Z, Feng T, Zeng X, Janaswamy S, Wang H, Campanella O (2019) Structural characterization and digestibility of curcumin loaded octenyl succinic nanoparticles. Nanomaterials 9(8):1073

    Article  CAS  Google Scholar 

  53. Liu B, Jiang T, Zheng H, Dissanayke S, Song W, Federico A, Suib SL, He J (2017) Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks. Nanoscale 9(19):6380–6390

    Article  CAS  Google Scholar 

  54. Shahat A, Hassan HM, Azzazy HM, El-Sharkawy EA, Abdou HM, Awual R (2018) Novel hierarchical composite adsorbent for selective lead(II) ions capturing from wastewater samples. Chem Eng J 332:377–386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Luis A. García de la Rosa and María Fernanda Veloz for their help and contribution on preliminary work. Also, special thanks to the editor of this special issue and the reviewers for their insightful comments and suggestions to the paper.

Author contributions

The paper was written through the contributions of all authors. All authors approved the final version of the paper.

Funding

This work was partially supported by CONACYT (Grants FON.INST./219/2017, CB-2010/154602, CONACYT-BMBF 2013/208132, and INFR-2014/02-23053). Partial support from the Office of Graduate Studies and Research (UDLAP) is acknowledged. JAFG is thankful to CONACYT for a Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Méndez-Rojas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flood-Garibay, J.A., Méndez-Rojas, M.A. A simple method for the synthesis of carboxymethylated wrinkled mesoporous silica nanoparticles and preparation of a WMS-curcumin conjugate. J Sol-Gel Sci Technol 102, 288–295 (2022). https://doi.org/10.1007/s10971-022-05747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05747-7

Keywords

Navigation