Skip to main content

Advertisement

Log in

Synthesis and characterization of Mn:CdS nanoflower thin films prepared by hydrothermal method for photocatalytic activity

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mn-CdS nanoflowers were successfully deposited using hydrothermal technique at 150 °C for 2 h. The effect of changing the dopant concentration on the structural, morphological and optical properties of the produced samples was investigated. The XRD diffraction technique showed the formation of hexagonal and cubic phases, whereas the FE-SEM analysis confirmed the success of the formation of flower-like nanostructures. The UV–Visible spectra revealed that the energy band-gap values decreased with increasing manganese concentrations. The optical band-gap ranges were 2.4, 2.35, 2.25, 2.14 and 1.76 eV thin films with concentrations of (0%, 1%, 2%, 3% and 4%) for undoped and Mn-doped cadmium sulfide. The results of UV–Vis spectroscopy agree with the conclusions of the PL study. The surface morphology was studied using scanning electron microscopy and atomic force microscopy. According to the results, the crystalline size decreased as doping concentrations increased. The Mn-doped cadmium sulfide films exhibited unprecedented photocatalytic activity for the decomposition of methyl blue (MB) and methyl violet (MV) dyes, due to high surface area, low energy gap and efficient charge separation properties for the prepared films.

Synthesis and Characterization of Mn:CdS Nanoflower Thin Films Prepared by Hydrothermal Method for Photocatalytic Activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2: Williamson–Hall (W–H) plot of doped CdS thin films with various Mn.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12: Photoluminescence spectra of pure CdS and doped CdS of Mn.
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Al Balushi BSM, Al Marzouqi F, Al Wahaibi B et al. (2018) Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Appl Surf Sci 457:559–565. https://doi.org/10.1016/j.apsusc.2018.06.286

    Article  CAS  Google Scholar 

  2. Iacomi F, Purica M, Budianu E et al. (2007) Structural studies on some doped CdS thin films deposited by thermal evaporation. Thin Solid Films 515:6080–6084. https://doi.org/10.1016/j.tsf.2006.12.091

    Article  CAS  Google Scholar 

  3. Karthik K, Pushpa S, Madhukara Naik M, Vinuth M (2020) Influence of Sn and Mn on structural, optical and magnetic properties of spray pyrolysed CdS thin films. Mater Res Innov 24:82–86. https://doi.org/10.1080/14328917.2019.1597436

    Article  CAS  Google Scholar 

  4. Yang X, Wang B, Mu Y, et al. (2019) Photocatalytic performance of cubic and hexagonal phase CdS synthesized via different Cd sources. J Electron Mater. https://doi.org/10.1007/s11664-019-06967-4

  5. Diaz-Grijalva OI, Berman-Mendoza D, Flores-Pacheco A et al. (2020) Cu-doped CdS thin films by chemical bath deposition and ion exchange. J Mater Sci Mater Electron 31:1722–1730. https://doi.org/10.1007/s10854-019-02690-2

    Article  CAS  Google Scholar 

  6. Khan M, Shahid Khan M, Aziz A et al. (2013) Spectroscopic studies of sol-gel grown CdS nanocrystalline thin films for optoelectronic devices. Mater Sci Semicond Process 16:1894–1898. https://doi.org/10.1016/j.mssp.2013.07.010

    Article  CAS  Google Scholar 

  7. Trajić J, Gilić M, Romčević N et al. (2015) Raman spectroscopy of optical properties in cds thin films. Sci Sinter 47:145–152. https://doi.org/10.2298/SOS1502145T

    Article  Google Scholar 

  8. Zyoud A, Saa’Deddin I, Khudruj S et al. (2013) CdS/FTO thin film electrodes deposited by chemical bath deposition and by electrochemical deposition: a comparative assessment of photo-electrochemical characteristics. Solid State Sci 18:83–90. https://doi.org/10.1016/j.solidstatesciences.2013.01.004

    Article  CAS  Google Scholar 

  9. Islam MA, Haque F, Rahman KS et al. (2015) Effect of oxidation on structural, optical and electrical properties of CdS thin films grown by sputtering. Optik 126:3177–3180. https://doi.org/10.1016/j.ijleo.2015.07.078

    Article  CAS  Google Scholar 

  10. Xie R, Su J, Li M, Guo L (2013) Structural and photoelectrochemical properties of Cu-doped CdS thin films prepared by ultrasonic spray pyrolysis. Int J Photoenergy. https://doi.org/10.1155/2013/620134

  11. Loudhaief N, Labiadh H, Hannachi E et al. (2018) Synthesis of CdS nanoparticles by hydrothermal method and their effects on the electrical properties of bi-based superconductors. J Supercond Nov Magn 31:2305–2312. https://doi.org/10.1007/s10948-017-4496-4

    Article  CAS  Google Scholar 

  12. Husham M, Hassan Z, Mahdi MA et al. (2014) Fabrication and characterization of nanocrystalline CdS thin film-based optical sensor grown via microwave-assisted chemical bath deposition. Superlattices Microstruct 67:8–16. https://doi.org/10.1016/j.spmi.2013.12.010

    Article  CAS  Google Scholar 

  13. Liang YC, Lung TW (2016) Growth of hydrothermally derived CdS-based nanostructures with various crystal features and photoactivated properties. Nanoscale Res Lett 11. https://doi.org/10.1186/s11671-016-1490-x

  14. Mullamuri B, Sai Sriram Mosali V, Maseed H et al. (2021) Photocatalytic activity of heavy metal doped Cds nanoparticles synthesized by using ocimum sanctum leaf extract. Biointerface Res Appl Chem 11:12547–12559. https://doi.org/10.33263/BRIAC115.1254712559

    Article  CAS  Google Scholar 

  15. Murugesan R, Sivakumar S, Karthik K et al. (2019) Effect of Mg/Co on the properties of CdS thin films deposited by spray pyrolysis technique. Curr Appl Phys 19:1136–1144. https://doi.org/10.1016/j.cap.2019.07.008

    Article  Google Scholar 

  16. Rmili A, Ouachtari F, Bouaoud A et al. (2013) Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis. J Alloy Compd 557:53–59. https://doi.org/10.1016/j.jallcom.2012.12.136

    Article  CAS  Google Scholar 

  17. Suo Z, Dai J, Gao S, Gao H (2020) Effect of transition metals (Sc, Ti, V, Cr and Mn) doping on electronic structure and optical properties of CdS. Results Phys 17:103058. https://doi.org/10.1016/j.rinp.2020.103058

    Article  Google Scholar 

  18. Phasook N, Kamoldirok S, Yindeesuk W (2018) Optical properties of Mn-doped CdS thin films grown by the SILAR method. J Phys Conf Ser 1144. https://doi.org/10.1088/1742-6596/1144/1/012009

  19. Muckel F, Delikanli S, Hernández-Martínez PL et al. (2018) Sp-d exchange interactions in wave function engineered colloidal CdSe/Mn:CdS hetero-nanoplatelets. Nano Lett 18:2047–2053. https://doi.org/10.1021/acs.nanolett.8b00060

    Article  CAS  Google Scholar 

  20. Bhattacharyya S, Estrin Y, Rich DH et al. (2010) Luminescent and ferromagnetic CdS:Mn2+/C core-shell nanocrystals. J Phys Chem C 114:22002–22011. https://doi.org/10.1021/jp107083f

    Article  CAS  Google Scholar 

  21. Saikia L, Bhuyan D, Saikia M et al. (2015) Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Appl Catal A Gen 490:42–49. https://doi.org/10.1016/j.apcata.2014.10.053

    Article  CAS  Google Scholar 

  22. Al-Jawad SMH, Ismail MM, Ghazi SF (2021) Characteristics of Ni-doped TiO2 nanorod array films. J Aust Ceram Soc 57:295–304. https://doi.org/10.1007/s41779-020-00530-9

    Article  CAS  Google Scholar 

  23. AL-Jawad SMH, Taha AA, Redha AM (2019) Studying the structural, morphological, and optical properties of CuS:Ni nanostructure prepared by a hydrothermal method for biological activity. J Sol-Gel Sci Technol 91:310–323. https://doi.org/10.1007/s10971-019-05023-1

    Article  CAS  Google Scholar 

  24. Aksu S, Bacaksiz E, Parlak M et al. (2011) Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation. Mater Chem Phys 130:340–345. https://doi.org/10.1016/j.matchemphys.2011.06.046

    Article  CAS  Google Scholar 

  25. Williamson GK, Hall WH (1953) X-Ray broadening from filed aluminium and tungsten. Acta Met 1:22–31

    Article  CAS  Google Scholar 

  26. Irfan H, Mohamed Racik K, Anand S (2018) Microstructural evaluation of CoAl2O4 nanoparticles by Williamson–Hall and size–strain plot methods. J Asian Ceram Soc 6:54–62. https://doi.org/10.1080/21870764.2018.1439606

    Article  Google Scholar 

  27. Judran HK, Yousif NA, AL-Jawad SMH (2021) Preparation and characterization of CdS prepared by hydrothermal method. J Sol-Gel Sci Technol 97:48–62. https://doi.org/10.1007/s10971-020-05430-9

    Article  CAS  Google Scholar 

  28. Shende DA, Rane YN, Raghuwanshi MG et al. (2018) Visible-light-driven photocatalytic activity of mixed phase CdS-flakes. Optik 161:284–292. https://doi.org/10.1016/j.ijleo.2018.02.052

    Article  CAS  Google Scholar 

  29. Russell P, Batchelor D, Facility AI, Russell PE (2001) SEM and AFM: complementary techniques for surface investigations. Microsc Anal 7:9–12

    Google Scholar 

  30. Al-Jawad SMH, Salman ON, Yousif NA (2018) Influence of titanium tetrachloride concentration and multiple growth cycles of TiO2 nanorod on photoanode performance in dye sensitized solar cell. Photonics Nanostruct Fundam Appl 31:81–88. https://doi.org/10.1016/j.photonics.2018.06.010

    Article  Google Scholar 

  31. Al-Jawad SMH, Salman ON, Yousif NA (2019) Influence of growth time on structural, optical and electrical properties of TiO2 nanorod arrays deposited by hydrothermal method. Surf Rev Lett 26:1–9. https://doi.org/10.1142/S0218625X1850155X

    Article  Google Scholar 

  32. Al-Jawad SMH, Imran NJ, Mohammad MR (2020) Effect of electrolyte solution and deposition methods on TiO2/CdS core-shell nanotube arrays for photoelectrocatalytic application. EPJ Appl Phys 92. https://doi.org/10.1051/epjap/2020200127

  33. Al-Jawad SMH, MOHAMMAD MR, JAMAL IMRANN (2018) Effect of electrolyte solution on structural and optical properties of TiO2 grown by anodization techniqye for photoelectrocatalytic application. Surf Rev Lett 25(5):16. https://doi.org/10.1142/S0218625X18500786

    Article  CAS  Google Scholar 

  34. Chandramohan S, Kanjilal A, Tripathi JK, et al. (2009) Structural and optical properties of Mn-doped CdS thin films prepared by ion implantation. J Appl Phys 105. https://doi.org/10.1063/1.3151712

  35. Chandramohan S, Kanjilal A, Sarangi SN et al. (2010) Effect of Fe-ion implantation doping on structural and optical properties of CdS thin films. Appl Phys A Mater Sci Process 99:837–842. https://doi.org/10.1007/s00339-010-5598-z

    Article  CAS  Google Scholar 

  36. Bhattacharyya D, Chaudhuri S, Pal AK (1995) Electrical conduction at low temperatures in polycrystalline CdTe and ZnTe films. Mater Chem Phys 40:44–49. https://doi.org/10.1016/0254-0584(94)01453-N

    Article  CAS  Google Scholar 

  37. Talebian N, Nilforoushan MR, Ramazan Ghasem R (2012) Enhanced photocatalytic activities of ZnO thin films: a comparative study of hybrid semiconductor nanomaterials. J Sol-Gel Sci Technol 64:36–46. https://doi.org/10.1007/s10971-012-2825-4

    Article  CAS  Google Scholar 

  38. Shaban M, Mustafa M, El Sayed AM (2016) Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; influence of copper doping, annealing, and deposition parameters. Mater Sci Semicond Process 56:329–343. https://doi.org/10.1016/j.mssp.2016.09.006

    Article  CAS  Google Scholar 

  39. Shaban YA (2013) Enhanced photocatalytic removal of methylene blue from seawater under natural sunlight using carbon-modified n-TiO2 nanoparticles. Environ Pollut 3. https://doi.org/10.5539/ep.v3n1p41

  40. Zheng G, Shang W, Xu L et al. (2015) Enhanced photocatalytic activity of ZnO thin films deriving from a porous structure. Mater Lett 150:1–4. https://doi.org/10.1016/j.matlet.2015.03.001

    Article  CAS  Google Scholar 

  41. Serhan M, Sprowls M, Jackemeyer D, et al. (2019) Total iron measurement in human serum with a smartphone. AIChE Annu Meet Conf Proc. https://doi.org/10.1039/x0xx00000x

  42. Chen CQ, Shi Y, Zhang YS et al. (2006) Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 96:1–4. https://doi.org/10.1103/PhysRevLett.96.075505

    Article  CAS  Google Scholar 

  43. Lang D, Xiang Q, Qiu G et al. (2014) Effects of crystalline phase and morphology on the visible light photocatalytic H2-production activity of CdS nanocrystals. Dalt Trans 43:7245–7253. https://doi.org/10.1039/c3dt53601g

    Article  CAS  Google Scholar 

  44. Jin J, Yu J, Liu G, Wong PK (2013) Single crystal CdS nanowires with high visible-light photocatalytic H 2-production performance. J Mater Chem A 1:10927–10934. https://doi.org/10.1039/c3ta12301d

    Article  CAS  Google Scholar 

  45. Hamden Z, Conceição D, Boufi S et al. (2017) Structural, morphological, optical and photocatalytic properties of Y, N-doped and codoped TiO2 thin films. Materials 10:1–13. https://doi.org/10.3390/ma10060600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma M. H. AL-Jawad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Jawad, S.M.H., Imran, N.J. & Aboud, K.H. Synthesis and characterization of Mn:CdS nanoflower thin films prepared by hydrothermal method for photocatalytic activity. J Sol-Gel Sci Technol 100, 423–439 (2021). https://doi.org/10.1007/s10971-021-05656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05656-1

Keywords

Navigation