Skip to main content
Log in

Cu-doped CdS thin films by chemical bath deposition and ion exchange

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents the synthesis and characterization of nanostructured cadmium sulfide thin films obtained by an ammonia-free chemical bath deposition process. Different levels of Cu ion doping were achieved by the ion exchange method of CdS at room temperature. The main objective was to control the energy band gap adjusting the copper concentration and to gather information about Cu-doped CdS thin films. Optical absorbance measurements were performed to obtain the band gap value through Tauc’s plot method. XPS measurements were used to obtain the copper and cadmium concentration. In addition, SEM micrographs were collected to obtain information about surface and structural arrangement on Cu-doped CdS thin films. It was also found that the exchange of cadmium by Cu-ions promoted the formation of a hexagonal crystalline structure, which was different than the initial pure cubic structure. Through optical characterization, it is possible to evaluate the impact of the metallic dopant on the band gap value, finding that it can be controlled by the percentage of added copper, which opens the possibility of applying this material to the development of electronic devices such as field effect transistors. In addition, a prototype of a MOS structure was fabricated employing both the undoped and the Cu-doped CdS thin film to corroborate its possible application as a field effect transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-Based photocatalysts. Energy Environ. Sci. 11(6), 1362–1391 (2018)

    Article  CAS  Google Scholar 

  2. P. Rodriguez, N. Muñoz-Aguirre, E. San-Martín Martinez, G. González de la Cruz, S.A. Tomas, O. Zelaya Angel, Synthesis and spectral properties of starch capped CdS nanoparticles in aqueous solution. J. Cryst. Growth 310(1), 160–164 (2008)

    Article  CAS  Google Scholar 

  3. M. Muthusamy, S. Muthukumaran, Effect of Cu-doping on structural, optical and photoluminescence properties of CdS thin films. Opt. Int. J. Light Electron. Opt. 126(24), 5200–5206 (2015)

    Article  CAS  Google Scholar 

  4. A. AbdolahzadehZiabari, F.E. Ghodsi, Influence of Cu doping and post-heat treatment on the microstructure, optical properties and photoluminescence features of sol-gel derived nanostructured CdS thin films. J. Lumin. 141, 121–129 (2013)

    Article  CAS  Google Scholar 

  5. P. Kumar, N. Saxena, A. Agarwal, V. Gupta, Influence of Ag doping concentration on structural and optical properties of CdS thin film. AIP Conf. Proc. 1661, 080017 (2015)

    Article  CAS  Google Scholar 

  6. T. Gaewdang, N. Wongcharoen, T. Wongcharoen, Characterisation of CdS/CdTe heterojunction solar cells by current-voltage measurements at various temperatures under illumination. Energy Procedia 15(2011), 299–304 (2012)

    Article  CAS  Google Scholar 

  7. R. Ochoa-Landín, J. Sastre-Hernández, O. Vigil-Galan, R. Ramírez-Bon, Chemically deposited CdS by an ammonia-free process for solar cells window layers. Sol. Energy 84(2), 208–214 (2010)

    Article  CAS  Google Scholar 

  8. G. Arreola-Jardón, L.A. González, L.A. García-Cerda, B. Gnade, M.A. Quevedo-López, R. Ramírez-Bon, Ammonia-free chemically deposited CdS films as active layers in thin film transistors. Thin Solid Films 519(1), 517–520 (2010)

    Article  CAS  Google Scholar 

  9. B. Mereu et al., Field-effect transistor based on nanometric thin CdS films. Mater. Sci. Eng. B 109(1–3), 260–263 (2004)

    Article  CAS  Google Scholar 

  10. S.A. Mirsagatov, R.R. Kabulov, M.A. Makhmudov, Injection photodiode based on an n-CdS/p-CdTe heterostructure. Semiconductors 47(6), 825–830 (2013)

    Article  CAS  Google Scholar 

  11. T.T. Xuan, J.Q. Liu, R.J. Xie, H.L. Li, Z. Sun, Microwave-assisted synthesis of CdS/ZnS: Cu quantum dots for white light-emitting diodes with high color rendition. Chem. Mater. 27(4), 1187–1193 (2015)

    Article  CAS  Google Scholar 

  12. T. Abe, J. Sato, S. Ohashi, M. Watanabe, Y. Kashiwaba, Light emission of a CdS(Cu)/CdS thin-film diode. Phys. Status Solidi Basic Res. 229(2), 1015–1018 (2002)

    Article  CAS  Google Scholar 

  13. S.R. Ferrá-González et al., Optical and structural properties of CdS thin films grown by chemical bath deposition doped with Ag by ion exchange. Opt. Int. J. Light Electron. Opt. 125(4), 1533–1536 (2014)

    Article  CAS  Google Scholar 

  14. A. Abdolahzadeh Ziabari, F.E. Ghodsi, Growth, characterization and studying of sol-gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: effects of post-heat treatment. Sol. Energy Mater. Sol. Cells 105, 249–262 (2012)

    Article  CAS  Google Scholar 

  15. O. Vigil-Galán et al., Physical properties of Bi doped CdTe thin films grown by CSVT and their influence on the CdS/CdTe solar cells PV-properties. Thin Solid Films 515(15 SPEC. ISS.), 5819–5823 (2007)

    Article  CAS  Google Scholar 

  16. E.A. Martín-Tovar, R. Castro-Rodríguez, A. Iribarren, Isoelectronic CdTe-doped ZnO thin films grown by PLD. Mater. Lett. 139, 352–354 (2015)

    Article  CAS  Google Scholar 

  17. E. Hernández-Rodríguez, M. Loeza-Poot, I. Riech, V. Rejón, J.L. Peña, A comparative study of CdS: F and CdS: O thin films deposited by reactive RF-sputtering technique for window layer application in solar cells. J. Phys. D 48(25), 255102 (2015)

    Article  CAS  Google Scholar 

  18. P. Gogoi, Thermally deposited Ag-doped CdS thin film transistors with high-k rare-earth oxide Nd2O3 as gate dielectric. Semiconductors 47(3), 341–344 (2013)

    Article  CAS  Google Scholar 

  19. N.A. Shah et al., Physical properties and characterization of Ag doped CdS thin films. J. Alloys Compd. 512(1), 27–32 (2012)

    Article  CAS  Google Scholar 

  20. S. Yilmaz, The investigation of spray pyrolysis grown CdS thin films doped with flourine atoms. Appl. Surf. Sci. 357, 873–879 (2015)

    Article  CAS  Google Scholar 

  21. R. Panda et al., Carrier recombination in Cu doped CdS thin films: photocurrent and optical studies. Appl. Surf. Sci. 258(12), 5086–5093 (2012)

    Article  CAS  Google Scholar 

  22. A. Jaber, S.N. Alamri, M.S. Aida, Ammonia free growth of CdS thin films by chemical bath technique. AIP Conf. Proc. 1370, 81–88 (2011)

    Article  CAS  Google Scholar 

  23. J.I. Contreras-Rascón, J. Díaz-Reyes, J.E. Flores-Mena, M. Galvan-Arellano, L.A. Juárez-Morán, R.S. Castillo-Ojeda, Characterization of CBD-CdSe1-ySy deposited at low-temperature for photovoltaic applications. Curr. Appl. Phys. 15(12), 1568–1575 (2015)

    Article  Google Scholar 

  24. P.O. Brien, J. Mcaleese, bath deposition of ZnS and CdS. Technology 8(11), 2309–2314 (1998)

    Google Scholar 

  25. J. Hernández-Borja, Y.V. Vorobiev, R. Ramírez-Bon, Thin film solar cells of CdS/PbS chemically deposited by an ammonia-free process. Sol. Energy Mater. Sol. Cells. 95, 1882–1888 (2011)

    Article  CAS  Google Scholar 

  26. M.G. Sandoval-Paz, R. Ramírez-Bon, Analysis of the early growth mechanisms during the chemical deposition of CdS thin films by spectroscopic ellipsometry. Thin Solid Films 517, 6747–6752 (2009)

    Article  CAS  Google Scholar 

  27. M.G. Sandoval-Paz, M. Sotelo-Lerma, A. Mendoza-Galvan, R. Ramírez-Bon, Optical properties and layer microstructure of CdS films obtained from an ammonia-free chemical bath deposition process. Thin Solid Films 515, 3356–3362 (2007)

    Article  CAS  Google Scholar 

  28. C.D. Lokhande, E.H. Lee, K.D. Jung, O.S. Joo, Ammonia-free chemical bath method for deposition of microcrystalline cadmium selenide films. Mater. Chem. Phys. 91, 200–204 (2005)

    Article  CAS  Google Scholar 

  29. D.H. Rose, F.S. Hasoon, R.G. Dhere, D.S. Albin, R.M. Ribelin, X.S. Li, Y. Mahathongdy, T.A. Gessert, P. Sheldon, Fabrication procedures and process sensitivities for CdS/CdTe solar cells. Prog. Photovoltaics Res. Appl. 7, 331–340 (1999)

    Article  CAS  Google Scholar 

  30. H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl. Surf. Sci. 255, 4129–4134 (2009)

    Article  CAS  Google Scholar 

  31. K. Ravichandran, V. Senthamilselvi, Effect of indium doping level on certain physical properties of CdS films deposited using an improved SILAR technique. Appl. Surf. Sci. 270, 439–444 (2013)

    Article  CAS  Google Scholar 

  32. J.H. Lee, J.S. Yi, K.J. Yang, J.H. Park, R.D. Oh, Electrical and optical properties of boron doped CdS thin films prepared by chemical bath deposition. Thin Solid Films 431–432, 344–348 (2003)

    Article  CAS  Google Scholar 

  33. A.K. Gupta, R. Kripal, EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 96, 626–631 (2012)

    Article  CAS  Google Scholar 

  34. A. Jafari, A. Zakaria, Fabrication and modification of chemical deposited nanocrystalline cadmium sulphide thin film in presence of impurity. AIP Conf. Proc. 1482, 617–620 (2012)

    Article  CAS  Google Scholar 

  35. S. Mageswari, L. Dhivya, B. Palanivel, R. Murugan, Structural, morphological and optical properties of Na and K dual doped CdS thin film. J. Alloy. Compd. 545, 41–45 (2012)

    Article  CAS  Google Scholar 

  36. V.S. Taur, R.A. Joshi, R. Sharma, Annealing-induced modifications in physicochemical and optoelectronic properties of Ag-doped nanostructured CdS thin films. Int. J. Photoenergy 2012, 1–7 (2012)

    Article  CAS  Google Scholar 

  37. P. Li, C. Zhang, J. Lian, M. Ren, P. Wang, X. Yu, S. Gao, First-principle study of optical properties of Cu-doped CdS. Opt. Commun. 295, 45–52 (2013)

    Article  CAS  Google Scholar 

  38. H.H. Afify, I.K. El Zawawi, I.K. Battisha, Photoelectronic properties of (Cu, Fe, Al) incorporated CdS thin films. J. Mater. Sci. Mater. Electron. 10, 497–502 (1999)

    CAS  Google Scholar 

  39. P. J. Sebastian, Appl. Phys. Lett. 62(23), 2956–2958 (1993)

    Article  CAS  Google Scholar 

  40. I. Dr, M. Luqman (eds.), Ion Exchange Technology I (Springer, Dordrecht, 2012)

    Google Scholar 

  41. J.B. Rivest, P.K. Jain, Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96 (2013)

    Article  CAS  Google Scholar 

  42. A. Flores-Pacheco, J.I. Contreras-Rascón, J. Diaz-Reyes, P.D. Angel-Vicente, J.P. Enríquez, S.J. Castillo, M.E. Álvarez-Ramos, Stimulation of the photoluminescent properties of CBD-CdS thin films achieved by structural modifications resulting from Ag+ doping. Phys. Status Solidi - Rapid Res. Lett. 11, 1700134 (2017)

    Article  CAS  Google Scholar 

  43. A. Mukherjee, M. Fu, P. Mitra, Influence of Zn incorporation in CdS: structural and morphological studies. J. Phys. Chem. Solids 82, 50–55 (2015)

    Article  CAS  Google Scholar 

  44. M. Ristova, M. Ristov, XPS profile analysis on CdS thin film modified with Ag by an ion exchange. Appl. Surf. Sci. 181(1–2), 68–77 (2001)

    Article  CAS  Google Scholar 

  45. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15(2), 627–637 (1966)

    Article  CAS  Google Scholar 

  46. M. Muthusamy, S. Muthukumaran, Effect of Cu-doping on structural, optical and photoluminescence properties of CdS thin films. Optik 126(24), 5200–5206 (2015)

    Article  CAS  Google Scholar 

  47. M. Stoev, A. Katerski, XPS and XRD study of photoconductive CdS films obtained by a chemical bath deposition process. J. Mater. Chem. 6, 377 (1996)

    Article  CAS  Google Scholar 

  48. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 2nd edn. Edein Prairie, MN: Perkin-Elmer Corporation Physical Electronics Division (1992)

    Google Scholar 

  49. S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Crystallogr. 42(4), 726–729 (2009)

    Article  CAS  Google Scholar 

  50. H. Moualkia, S. Hariech, M.S. Aida, Structural and optical properties of CdS thin films grown by chemical bath deposition. Thin Solid Films 518(4), 1259–1262 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the CONACyT projects: FORDECYT 272894, Basic Science 242508 and National Laboratories 294452 for the support. The authors express our thanks to the nanoFAB Laboratory for the use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Berman-Mendoza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Grijalva, O.I., Berman-Mendoza, D., Flores-Pacheco, A. et al. Cu-doped CdS thin films by chemical bath deposition and ion exchange. J Mater Sci: Mater Electron 31, 1722–1730 (2020). https://doi.org/10.1007/s10854-019-02690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02690-2

Navigation