Skip to main content
Log in

Enhanced photocatalytic activities of ZnO thin films: a comparative study of hybrid semiconductor nanomaterials

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanostructure single ZnO, SnO2, In2O3 and composite ZnO/SnO2, ZnO/In2O3 and ZnO/SnO2/In2O3 films were prepared using sol–gel method. The obtained composite films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–Vis spectroscopy. The photocatalytic activities of composite films were investigated using phenol (P), 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 4-aminophenol (4-AP) as a model organic compounds under UV light irradiation. Hybrid semiconductor thin films showed a higher photocatalytic activity than single component ZnO, SnO2 and In2O3 films. The substituted phenols degrade faster than phenol. The ease of degradation of phenols is different for each catalyst and the order of catalytic efficiency is also different for each phenol. The use of multiple components offered a higher control of their properties by varying the composition of the materials and related parameters such as morphology and interface. It was also found that the photocatalytic degradation of phenolic compounds on the composite films and single films followed pseudo-first order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schiavello M (1988) Photocatalysis and environment. Kluwer, Dordrecht

    Google Scholar 

  2. Ollis DF, Al-Ekabi H (1993) Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam

    Google Scholar 

  3. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  4. Pichat P (2003) In: Tarr MA (ed) Chemical degradation for wastes and pollutants: environmental and industrial applications. Marcel Dekker, New York, pp 77–119

    Google Scholar 

  5. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  6. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis. BKC, Tokyo

    Google Scholar 

  7. King MB (1969) Phase equilibrium in mixtures. Pergamon Press, New York

    Google Scholar 

  8. Greminger DC, Burns GP, Lynn S, Hanson DN, King CJ (1982) Ind Eng Chem Process Des Dev 21:51–54

    Article  CAS  Google Scholar 

  9. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58:1049–1070

    Article  CAS  Google Scholar 

  10. Hoshi M, Kogure M, Saitoh T, Nakagawa T (1997) Separation of aqueous phenol through polyurethane membranes by pervaporation. J Appl Polym Sci 65:469–479

    Article  CAS  Google Scholar 

  11. Bhargava SK, Tardio J, Prasad J, Folger K, Akolekar DB, Grocott SC (2006) Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res 45:1221–1258

    Article  CAS  Google Scholar 

  12. Panizza M, Cerisola G (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res 35:3987–3992

    Article  CAS  Google Scholar 

  13. Colon G, Sanchez-España JM, Hidalgo MC, Navìo JA (2006) Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. J Photochem Photobiol, A: Chem 179:20–27

    Article  CAS  Google Scholar 

  14. Long Jiang HE, Hwatay J, Maszenan AM, Lee Tay ST (2006) Enhanced phenol biodegradation and aerobic granulation by two co aggregating bacterial strains. Environ Sc Technol 40:6137–6142

    Article  Google Scholar 

  15. Buikema AL Jr, McGinniss MJ, Caims J Jr (1979) Phenolics in aquatic ecosystems: a selected review of recent literature. Mar Environ Res 2:87–181

    Article  CAS  Google Scholar 

  16. American Conference of Governmental Industrial Hygienists Standards (ACGIH) Manual (2005) and United States Environmental Protection Agency, EPA, 816-F-01-007, 2006

  17. Patil SS, Shinde VM (1988) Biodegradation studies of aniline and nitrobenzene in aniline plant wastewater by gas chromatography. Environ Sci Technol 22:1160–1165

    Article  CAS  Google Scholar 

  18. Moore AT, Vira A, Fogel S (1989) Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator. Environ Sci Technol 23:403–406

    Article  CAS  Google Scholar 

  19. Lin SH, Lin CM (1993) Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res 27:1743–1748

    Article  CAS  Google Scholar 

  20. Meshko V, Markovska L, Mincheva M, Rodrigues AE (2001) Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Res 35:3357–3366

    Article  CAS  Google Scholar 

  21. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2005) Occurrence and production of chloramines in the chlorination of creatinine in aqueous solution. J Colloid Interf Sci 288:371–379

    Article  CAS  Google Scholar 

  22. Galindo C, Jacques P, Kalt A (2001) Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005

    Article  CAS  Google Scholar 

  23. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82

    Article  CAS  Google Scholar 

  24. Jang YJ, Simer C, Ohm T (2006) Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue. Mater Res Bull 41:67–77

    Article  CAS  Google Scholar 

  25. Gouvea K, Wypych F, Moraes SG, Duran N, Nagata N, Peralta-Zamora P (2000) Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 40:433–440

    Article  CAS  Google Scholar 

  26. Dindar S, Icli J (2001) Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. Photochem Photobiol A Chem 140:263–268

    Article  CAS  Google Scholar 

  27. Lizama C, Freer J, Baeza J, Mansilla HD (2002) Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catal Today 76:235–246

    Article  CAS  Google Scholar 

  28. Wang J, Jiang Z, Zhang L, Kang P, Xie Y, Lv Y, Xu R, Zhang X (2009) Onocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultrason Sonochem 16:225–231

    Article  Google Scholar 

  29. Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater B 112:269–278

    Article  CAS  Google Scholar 

  30. Yatmaz HC, Akyol A, Bayramoglu M (2004) Kinetics of the photocatalytic decolorization of an Azo reactive dye in aqueous ZnO suspensions. Ind Eng Chem Res 43:6035–6039

    Article  CAS  Google Scholar 

  31. Wang Y, Li X, Lu G, Chen G, Chen Y (2008) Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology. Mater Lett 62:2359–2362

    Article  CAS  Google Scholar 

  32. Wang H, Xie C, Zhang W, Cai S, Yang Z, Gui Y (2007) Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazard Mater 141:645–652

    Article  CAS  Google Scholar 

  33. Xu L et al (2009) ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem Mater 21:2875–2879

    Article  CAS  Google Scholar 

  34. Wang Y, Li X, Wang N, Quan X, Chen Y (2008) Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep Purif Techno 62:729–734

    Google Scholar 

  35. Chakrabarti S, Chaudhuri B, Bhattacharjee S, Das P, Dutta BK (2008) Degradation mechanism and kinetic model for photocatalytic oxidation of PVC–ZnO composite film in presence of a sensitizing dye and UV radiation. J Hazard Mater 154:230–236

    Article  CAS  Google Scholar 

  36. Pal B, Sharon M (2002) Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel process. Mater Chem Phys 76:82–87

    Article  CAS  Google Scholar 

  37. Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-Irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. Nano Lett 3:353–358

    Article  CAS  Google Scholar 

  38. Sasaki T et al (2004) Photoelectrochemical behavior of the Pt/TiO2 nanocomposite electrodes prepared by co-sputter deposition. Electrochemistry 72:443–449

    CAS  Google Scholar 

  39. Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, Neophytides SG, Falaras P (2003) Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl Catal B Environ 42:187–201

    Article  CAS  Google Scholar 

  40. Choi WY, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  41. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  42. Bhargava RN, Gallagher D, Welker T (1994) Doped nanocrystals of semiconductors—a new class of luminescent materials. J Lumin 60–61:275–280

    Article  Google Scholar 

  43. Kumara G et al (2003) Efficient dye-sensitized photoelectrochemical cells made from nanocrystalline tin(IV) oxide–zinc oxide composite films. Semicond Sci Technol 18:312–318

    Article  CAS  Google Scholar 

  44. Van LH, Hong MH, Ding J (2006) Pulsed laser deposition and fabrication of CoO/ZnO and CoO/TiO2 nano-hybrid thin film. Solid State Phenom 111:131–134

    Article  CAS  Google Scholar 

  45. Skorb EV, Antonouskaya LI, Belyasova NA, Shchukin DG, Möhwald H, Sviridov DV (2008) Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite. Appl Catal B Environ 84:94–99

    Article  CAS  Google Scholar 

  46. Chou CH, Wang HS, Wei KH, Huang JY (2006) Thiophenol-modified CdS nanoparticles enhance the luminescence of benzoxyl dendron-substituted polyfluorene copolymers. Adv Funct Mater 16:909–916

    Article  CAS  Google Scholar 

  47. van Beek R et al (2006) Side chain mediated electronic contact between a tetrahydro-4H-thiopyran-4-ylidene-appended polythiophene and Cd/Te quantum dots. Chem Eur J 12:8075–8083

    Article  Google Scholar 

  48. Hammer NI, Emrick T, Barnes MD (2007) Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Res Lett 2:282–290

    Article  CAS  Google Scholar 

  49. Hotchandani S, Kamat PV (1992) Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system. J Phys Chem 96:6834–6839

    Article  CAS  Google Scholar 

  50. Vaezi MR (2008) Two-step solochemical synthesis of ZnO/TiO2 nano-composite materials. J Mater Process Technol 205:332–337

    Article  CAS  Google Scholar 

  51. Jung MN et al (2009) Field emission properties of indium-doped ZnO tetrapods. Curr Appl Phys 9:e169–e172

    Article  Google Scholar 

  52. Peng LP et al (2009) Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films. J Alloys Comp 484:575–579

    Article  CAS  Google Scholar 

  53. Hu J, Gordon RG (1992) Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium. J Appl Phys 72:5381–5392

    Article  CAS  Google Scholar 

  54. Gómez H, Maldonado A, Asomoza R, Zironi EP, Cańetas-Ortega J, Palacios-Gómez J (1997) Characterization of indium-doped zinc oxide films deposited by pyrolytic spray with different indium compounds as dopants. Thin Solid Films 293:117–123

    Article  Google Scholar 

  55. Bougrine A, El Hichou A, Addou M, Ebothé J, Kachouane A, Troyon M (2003) Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis. Mater Chem Phys 80:438–445

    Article  CAS  Google Scholar 

  56. Gulino A, Fragala I (2002) Deposition and characterization of transparent thin films of zinc oxide doped with Bi and Sb. Chem Mater 14:116–121

    Article  CAS  Google Scholar 

  57. Oua H–H, Loa S-L, Wu C-H (2006) Exploring the interparticle electron transfer process in the photocatalytic oxidation of 4-chlorophenol. J Hazard Mater B137:1362–1370

    Article  Google Scholar 

  58. Wang C et al (2004) Enhanced photocatalytic performance of nano sized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. J Photochem Photobiol, A: Chem 168:47–52

    Article  CAS  Google Scholar 

  59. Zhang M, An T, Hu X, Wang C, Sheng G, Fu J (2004) Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Appl Catal A General 260:215–222

    Article  CAS  Google Scholar 

  60. Cun W et al (2002) Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl Catal B: Environ 39:269–279

    Article  Google Scholar 

  61. Liu G, Li G, Qiu X, Li L (2009) Synthesis of ZnO/titanate nanocomposites with highly photocatalytic activity under visible light irradiation. J Alloys Compd 481:492–497

    Article  CAS  Google Scholar 

  62. Wang X-T, Zhong S-H, Xiao X-F (2005) Photo-catalysis of ethane and carbon dioxide to produce hydrocarbon oxygenates over ZnO-TiO2/SiO2 catalyst. J Mol Catal A: Chem 22:87–93

    Article  CAS  Google Scholar 

  63. Shouqiang W, Zhongcai S, Xudong L, Ying L, Linlin C, Yan H (2009) Photocatalytic degradation of methyl orange over ITO/CdS/ZnO interface composite films. J Environ Sci 21:991–996

    Article  Google Scholar 

  64. Suárez-Parraa R, Hernández-Pérez I, Rincón ME, López-Ayalaa S, Roldán-Ahumada MC (2003) Visible light-induced degradation of blue textile azo dye on TiO2/CdO–ZnO coupled nanoporous films. Sol Energy Mater Sol Cells 76:189–199

    Article  Google Scholar 

  65. Zhang Z, Yuan Y, Fang Y, Liang L, Ding H, Jin L (2007) Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand. Talanta 73:523–528

    Article  CAS  Google Scholar 

  66. Tian J et al (2009) Photocatalyst of TiO2/ZnO nano composite film: preparation, characterization, and photodegradation activity of methyl orange. Surf Coat Technol 204:205–214

    Article  CAS  Google Scholar 

  67. Jiang HB, Gao L, Zhang QH (2003) Preparation and properties of Fe2O3/TiO2 and ZnO/TiO2 nanosized particulate thin films. J Inorg Mater 18:695–699

    CAS  Google Scholar 

  68. Khodja AA, Sehili T, Pilichowski J-F, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A Chem 141:231–239

    Article  CAS  Google Scholar 

  69. Sobana N, Muruganandam M, Swaminathan M (2008) Characterization of AC-ZnO catalyst and its photocatalytic activity on 4-acetylphenol degradation. Catal Commun 9:262–268

    Article  CAS  Google Scholar 

  70. Salah NH, Bouhelassa M, Bekkouche S, Boultif A (2004) Study of photocatalytic degradation of phenol. Desalination 166:347–354

    Article  CAS  Google Scholar 

  71. Lee HS, Lee JY, Kim TW, Kim DW, Cho WJ (2004) Formation mechanism of preferential c-axis oriented ZnO thin films grown on p-Si substrates. J Mater Sci 39:3525–3528

    Article  CAS  Google Scholar 

  72. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    CAS  Google Scholar 

  73. Ghosh R, Basak D, Fujihara S (2004) Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J Appl Phys 96:2689–2692

    Article  CAS  Google Scholar 

  74. Zhang Y, Lin B, Fu Z, Liu C, Han W (2006) Strong ultraviolet emission and rectifying behavior of nanocrystalline ZnO films. Opt Mater 28:1192–1196

    Article  CAS  Google Scholar 

  75. Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA (2006) Physical properties of ZnO thin films deposited by spray pyrolysis technique. Appl Surf Sci 252:7844–7848

    Article  CAS  Google Scholar 

  76. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    CAS  Google Scholar 

  77. Testino A et al (2007) Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J Am Chem Soc 129:3564–3575

    Article  CAS  Google Scholar 

  78. Tachikawa T, Fujitsuka M, Majima T (2007) Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J Phys Chem C 111:5259–5275

    Article  CAS  Google Scholar 

  79. Zhao J, Li B, Onda K, Feng M, Petek H (2006) Solvated electron on metal oxide surfaces. Chem Rev 106:4402–4427

    Article  CAS  Google Scholar 

  80. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  81. Li GR, Hu T, Pan GL, Yan TY, Gao XP, Zhu HY (2008) Morphology—function relationship of ZnO: polar planes, oxygen vacancies, and activity. J Phys Chem C 112:11859–11864

    Article  CAS  Google Scholar 

  82. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  CAS  Google Scholar 

  83. Ahmed S, Rasul MG, Wayde N, Martens R, Brown MA, Hashib S (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261: 3–18 and the references cited in there

  84. Brezova V, Ceppan M, Breza M, Brandsteterova E, Lapcik L (1991) Photocatalytic hydroxylation of benzoic acid in aqueous titanium dioxide suspension. J Photochem Photobiol A 59:385–391

    Article  CAS  Google Scholar 

  85. Eberhardt MK, Yoshida M (1973) Radiation-induced homolytic aromatic substitution. I. Hydroxylation of nitrobenzene, chlorobenzene, and toluene. J Phys Chem 77:589–597

    Article  CAS  Google Scholar 

  86. Poulios I, Kositzi M, Kouras A (1998) Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions, Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions. J Photochem Photobiol A Chem 115:175–183

    Article  CAS  Google Scholar 

  87. Richard C, Bengana S (1996) pH effect in the photocatalytic transformation of a phenyl-urea herbicide. Chemosphere 33:635–641

    Article  CAS  Google Scholar 

  88. Zhang F, Zhao J, Shen T, Hidaka H, Pelizzetti E, Serpone N (1998) TiO2—assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Appl Catal B Environ 15:147–156

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by Islamic Azad University, Shahreza branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Talebian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talebian, N., Nilforoushan, M.R. & Ramazan Ghasem, R. Enhanced photocatalytic activities of ZnO thin films: a comparative study of hybrid semiconductor nanomaterials. J Sol-Gel Sci Technol 64, 36–46 (2012). https://doi.org/10.1007/s10971-012-2825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2825-4

Keywords

Navigation