Skip to main content
Log in

Catalysis of silica sol–gel reactions using a PdCl2 precursor

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work shows for the first time that palladium chloride, PdCl2, can influence the sequencing of sol–gel reactions involving tetraethyl orthosilicate (TEOS). A three-step procedure was utilised to create porous silica materials: liquid-phase sol reaction, drying and calcination. Evidence from 1H Nuclear Magnetic Resonance (NMR) spectroscopy revealed that PdCl2 had negligible influence on liquid-phase sol–gel reactions. During drying, 29Si NMR data showed that the silica sols doped with PdCl2 underwent more condensation reactions than those without. Variations in parameters known to effect sol–gel reactions could not account for the magnitude of the observed changes. Evidence from differential scanning calorimetry indicates that palladium catalyses silica hydrolysis during the drying stage, which promotes condensation reactions. Despite being more condensed after drying, 29Si NMR analysis revealed that the palladium silica structure became less condensed (compared with non-doped silica) after calcination. It is hypothesised that the interaction between palladium oxide and silanol groups inhibits condensation during the calcination process. The differences in sol–gel bonding seems to have minimal influence on the porosity of the calcined materials, though the presence of palladium nanoparticles reduced the total pore volume. This work has important implications for the design and optimisation of porous palladium silica materials. It also challenges the common assumption that metal dopants do not interact with silica sol–gel reactions.

Differential scanning calorimetry analysis of silica (Si06) and palladium doped silica (PdSi06) xerogels prepared via sol–gel. The PdSi06 material exhibits no exothermic peak between 300 and 500 °C. This is indicative of the catalytic effect of aqueous palladium species on sol–gel hydrolysis reactions.

Highlights

  • Palladium chloride catalyses the silica sol–gel reaction with tetraethyl orthosilicate.

  • 29Si NMR shows that catalysis occurs during solvent evaporation.

  • During calcination, palladium dopant inhibits the formation of siloxane bonds.

  • It is hypothesised that palladium stabilises silanol bonds, preventing their condensation.

  • Despite influencing sol–gel reactions, palladium did not alter material pore size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao X et al. (2017) Pore-neck resistance to light gases in a microporous BTESE-derived silica: a comparison of membrane and xerogel powder. J Membr Sci 531:36–46. https://doi.org/10.1016/j.memsci.2017.02.035

    Article  CAS  Google Scholar 

  2. Brinker CJ, Scherer GW (1985) Sol→ gel→ glass: I. Gelation and gel structure. J Non-Crystal Solids 70(3):301–322. https://doi.org/10.1016/0022-3093(85)90103-6

    Article  CAS  Google Scholar 

  3. Esposito S (2019) “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 12(4):668. https://doi.org/10.3390/ma12040668

    Article  CAS  Google Scholar 

  4. Abbass AE et al. (2017) Distinguishing the nature of silver incorporated in sol-gel silica. J Non-Crystal Solids 475:71–75. https://doi.org/10.1016/j.jnoncrysol.2017.08.033

    Article  CAS  Google Scholar 

  5. Ji X et al. (2018) Preparation of monolithic silica-based aerogels with high thermal stability by ambient pressure drying. Ceram Int 44(11):11923–11931

    Article  CAS  Google Scholar 

  6. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. San Diego, CA: Academic press

  7. Voronkov MG, IUzhelevsk’ii IA, Mileshkevich VP (1978) The siloxane bond: physical properties and chemical transformations. New York, NY: Consultants Bureau

  8. Fernandes J et al. (2019) Adsorption of gases and vapours in silica based xerogels. Colloids Surf A 561:128–135. https://doi.org/10.1016/j.colsurfa.2018.10.063

    Article  CAS  Google Scholar 

  9. Najafi-Shoa S, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Incorporation of epoxy resin and graphene nanolayers into silica xerogel network: an insight into thermal improvement of resin. J Sol-Gel Sci Technol 80(2):362–377. https://doi.org/10.1007/s10971-016-4128-7

    Article  CAS  Google Scholar 

  10. Ballinger B et al. (2015) Gas permeation redox effect on binary lanthanum cobalt silica membranes with enhanced silicate formation. J Membr Sci 489:220–226. https://doi.org/10.1016/j.memsci.2015.04.025

    Article  CAS  Google Scholar 

  11. Hernández CS et al. (2017) DBTL as neutral catalyst on TEOS/PDMS anticorrosive coating. J Sol-Gel Sci Technol 81(2):405–412. https://doi.org/10.1007/s10971-016-4198-6

    Article  CAS  Google Scholar 

  12. Khedkar MV et al. (2019) Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. J Non-Crystal Solids 511:140–146. https://doi.org/10.1016/j.jnoncrysol.2019.02.004

    Article  CAS  Google Scholar 

  13. Shafi S et al. (2019) Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel. J Non-Crystal Solids 503:78–83. https://doi.org/10.1016/j.jnoncrysol.2018.09.029

    Article  CAS  Google Scholar 

  14. Jacinto M et al. (2016) Platinum-supported mesoporous silica of facile recovery as a catalyst for hydrogenation of polyaromatic hydrocarbons under ultra-mild conditions. J Sol-Gel Sci Technol 77(2):298–305. https://doi.org/10.1007/s10971-015-3854-6

    Article  CAS  Google Scholar 

  15. da Silva AG et al. (2013) Gold, palladium and gold–palladium supported on silica catalysts prepared by sol–gel method: synthesis, characterization and catalytic behavior in the ethanol steam reforming. J Sol-Gel Sci Technol 67(2):273–281. https://doi.org/10.1007/s10971-013-3076-8

    Article  CAS  Google Scholar 

  16. Ge S et al. (2017) Facile fabrication of NaCl-added mesoporous silica HMS composite and its humidity responsing performance. J Sol-Gel Sci Technol 82(3):635–642. https://doi.org/10.1007/s10971-017-4348-5

    Article  CAS  Google Scholar 

  17. Mirzaei A, Leonardi S, Neri G (2016) Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int 42(14):15119–15141

    Article  CAS  Google Scholar 

  18. Battersby S et al. (2009) Hydrothermal stability of cobalt silica membranes in a water gas shift membrane reactor. Sep Purif Technol 66(2):299–305. https://doi.org/10.1016/j.seppur.2008.12.020

    Article  CAS  Google Scholar 

  19. Uhlmann D, Smart S, da Costa JCDiniz (2010) High temperature steam investigation of cobalt oxide silica membranes for gas separation. Sep Purif Technol 76(2):171–178. https://doi.org/10.1016/j.seppur.2010.10.004

    Article  CAS  Google Scholar 

  20. Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol− gel approach. Chem Mater 8(8):1667–1681. https://doi.org/10.1021/cm9601143

    Article  CAS  Google Scholar 

  21. Cattaruzza E et al. (2004) Structural and physical properties of cobalt nanocluster composite glasses. J Non-Crystal Solids 336(2):148–152. https://doi.org/10.1016/j.jnoncrysol.2004.01.003

    Article  CAS  Google Scholar 

  22. Liu X et al. (2000) Synthesis of mesostructured nickel oxide with silica. Ind Eng Chem Res 39(3):684–692. https://doi.org/10.1021/ie990129l

    Article  CAS  Google Scholar 

  23. Darmawan A et al. (2016) Structural evolution of nickel oxide silica sol-gel for the preparation of interlayer-free membranes. J Non-Crystal Solids 447:9–15. https://doi.org/10.1016/j.jnoncrysol.2016.05.031

    Article  CAS  Google Scholar 

  24. Naszályi L et al. (2008) Sol–gel-derived mesoporous SiO2/ZnO active coating and development of multifunctional ceramic membranes. Sep Purif Technol 59(3):304–309. https://doi.org/10.1016/j.seppur.2007.07.001

    Article  CAS  Google Scholar 

  25. Wajda A, Sitarz M (2016) Structural and microstructural studies of zinc-doped glasses from NaCaPO4-SiO2 system. J Non-Crystal Solids 441:66–73. https://doi.org/10.1016/j.jnoncrysol.2016.03.013

    Article  CAS  Google Scholar 

  26. Przekop RE et al. (2019) One-pot synthesis method of SiO2-La2O2CO3 and SiO2-La2O3 systems using metallic lanthanum as a precursor. J Non-Crystal Solids 520:119444. https://doi.org/10.1016/j.jnoncrysol.2019.05.020

    Article  CAS  Google Scholar 

  27. Darmawan A et al. (2016) Gas permeation redox effect of binary iron oxide/cobalt oxide silica membranes. Sep Purif Technol 171:248–255. https://doi.org/10.1016/j.seppur.2016.07.030

    Article  CAS  Google Scholar 

  28. Ballinger B et al. (2014) Palladium cobalt binary doping of molecular sieving silica membranes. J Membr Sci 451:185–191. https://doi.org/10.1016/j.memsci.2013.09.057

    Article  CAS  Google Scholar 

  29. Ikuhara YH et al. (2007) High‐temperature hydrogen adsorption properties of precursor‐derived nickel nanoparticle‐dispersed amorphous silica. J Am Ceram Soc 90(2):546–552. https://doi.org/10.1111/j.1551-2916.2006.01434.x

    Article  CAS  Google Scholar 

  30. Boffa V, Blank DH, ten Elshof JE (2008) Hydrothermal stability of microporous silica and niobia–silica membranes. J Membr Sci 319(1–2):256–263. https://doi.org/10.1016/j.memsci.2008.03.042

    Article  CAS  Google Scholar 

  31. Igi R et al. (2008) Characterization of Co‐doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J Am Ceram Soc 91(9):2975–2981. https://doi.org/10.1111/j.1551-2916.2008.02563.x

    Article  CAS  Google Scholar 

  32. Kanezashi M, Fujita T, Asaeda M (2005) Nickel‐doped silica membranes for separation of helium from organic gas mixtures. Sep Sci Technol 40(1–3):225–238. https://doi.org/10.1081/SS-200041989

    Article  CAS  Google Scholar 

  33. Peng S et al. (2013) Preparation of anticorrosion hybrid silica sol–gel coating using Ce(NO3)3 as catalyst. J Sol-Gel Sci Technol 66(1):133–138. https://doi.org/10.1007/s10971-013-2976-y

    Article  CAS  Google Scholar 

  34. Brinker C et al. (1984) Sol-gel transition in simple silicates II. J Non-Crystal Solids 63(1–2):45–59. https://doi.org/10.1016/0022-3093(84)90385-5

    Article  CAS  Google Scholar 

  35. Benson JJ, Wackett LP, Aksan A (2016) Production of monodisperse silica gel microspheres for bioencapsulation by extrusion into an oil cross-flow. J Microencapsul 33(5):412–420. https://doi.org/10.1080/02652048.2016.1202346

    Article  CAS  Google Scholar 

  36. Brinker CJ et al. (1990) Surface structure and chemistry of high surface area silica gels. J Non-Crystal Solids 120(1–3):26–33. https://doi.org/10.1016/0022-3093(90)90187-Q

    Article  CAS  Google Scholar 

  37. Elding LI (1972) Palladium (II) halide complexes. I. Stabilities and spectra of palladium (II) chloro and bromo aqua complexes. Inorg Chim Acta 6:647–651. https://doi.org/10.1016/S0020-1693(00)91874-7

    Article  CAS  Google Scholar 

  38. Tait CD, Janecky DR, Rogers PS (1991) Speciation of aqueous palladium (II) chloride solutions using optical spectroscopies. Geochimica et Cosmochimica Acta 55(5):1253–1264. https://doi.org/10.1016/0016-7037(91)90304-N

    Article  CAS  Google Scholar 

  39. Guella G et al. (2006) New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from 11B NMR measurements. J Phys Chem B 110(34):17024–17033. https://doi.org/10.1021/jp063362n

    Article  CAS  Google Scholar 

  40. Yoshida K et al. (2009) The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 20(31):315703. https://doi.org/10.1088/0957-4484/20/31/315703

    Article  CAS  Google Scholar 

  41. Piccaluga G (2000) Sol-gel preparation and characterization of metal-silica and metal oxide-silica nanocomposites. Switzerland: Trans Tech Pubn

  42. Uhlmann D, Smart S, da Costa JCDiniz (2011) H2S stability and separation performance of cobalt oxide silica membranes. J Membr Sci 380(1–2):48–54. https://doi.org/10.1016/j.memsci.2011.06.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by the Australian Research Council through Discovery Project Grant DP110101185, and the University Sains Malaysia postdoctoral fellow scholarship. The authors would like to thank Dr Ekaterina Strounina from the Centre for Advanced Imaging at The University of Queensland for her scientific and technical assistance relating to the NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ballinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballinger, B., Motuzas, J., Smart, S. et al. Catalysis of silica sol–gel reactions using a PdCl2 precursor. J Sol-Gel Sci Technol 95, 456–464 (2020). https://doi.org/10.1007/s10971-020-05241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05241-y

Keywords

Navigation