Skip to main content
Log in

Preparation of anticorrosion hybrid silica sol–gel coating using Ce(NO3)3 as catalyst

  • OriginalPaper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this report, hybrid silica sol–gel coating was prepared using Ce(NO3)3 (Sol-Ce) as catalyst. Structure, surface morphology and anticorrosion ability of Sol-Ce solution/coating were studied by infrared spectroscopy (IR), scanning electron microscopy, energy dispersive spectrometer (EDS), potentiodynamic scan (PDS) and electrochemical impedance spectroscopy (EIS). IR results showed that Ce(NO3)3 had a stronger influence on reactivity of alkoxysilane. EDS results revealed that the fraction of Fe in Sol-Ce coating was significantly lower than regular acid-catalyzed hybrid silica sol–gel coating (Sol-Ac) and Sol-Ac with Ce(NO3)3-doped coating (Sol-Ac/Ce). The results of PDS and EIS demonstrated that Sol-Ce coating had better anticorrosion ability than Sol-Ac and Sol-Ac/Ce on carbon steel. The enhanced anticorrosion performance of the Sol-Ce coating might result from the following two reasons: (a) Ce(NO3)3 as a catalyst could alleviate the negative effects of low pH with using acid catalyst (dissolution of carbon steel) and (b) Ce(NO3)3 could impede corrosion of carbon steel as corrosion inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang D, Bierwagen GR (2009) Sol–gel coatings on metals for corrosion protection. Prog Org Coat 64(4):327–338. doi:10.1016/j.porgcoat.2008.08.010

    Article  CAS  Google Scholar 

  2. Zheng SX, Li JH (2010) Inorganic-organic sol gel hybrid coatings for corrosion protection of metals. J Sol–Gel Sci Technol 54(2):174–187. doi:10.1007/s10971-010-2173-1

    Article  CAS  Google Scholar 

  3. Zheludkevich ML, Salvado IM, Ferreira MGS (2005) Sol–gel coatings for corrosion protection of metals. J Mater Chem 15(48):5099–5111. doi:10.1039/B419153f

    Article  CAS  Google Scholar 

  4. Metroke TL, Parkhill RL, Knobbe ET (2001) Passivation of metal alloys using sol–gel-derived materials—a review. Prog Org Coat 41(4):233–238. doi:10.1016/s0300-9440(01)00134-5

    Article  CAS  Google Scholar 

  5. Duran A, Castro Y, Aparicio M, Conde A, de Damborenea JJ (2007) Protection and surface modification of metals with sol–gel coatings. Int Mater Rev 52(3):175–192. doi:10.1179/174328007x160263

    Article  CAS  Google Scholar 

  6. Pathak SS, Khanna AS, Sinha TJM (2006) Sol–gel derived organic–inorganic hybrid coating: a new era in corrosion protection of material. Corros Rev 24(5–6):281–306. doi:10.1515/CORRREV.2006.24.5-6.281

    CAS  Google Scholar 

  7. Pepe A, Galliano P, Cere S, Aparicio M, Duran A (2005) Hybrid silica sol–gel coatings on Austempered Ductile Iron (ADI). Mater Lett 59(17):2219–2222. doi:10.1016/j.matlet.2005.03.001

    Article  CAS  Google Scholar 

  8. Voevodin NN, Kurdziel JW, Mantz R (2006) Corrosion protection for aerospace aluminum alloys by Modified Self-assembled Nanophase Particle (MSNAP) sol–gel. Surf Coat Technol 201(3–4):1080–1084. doi:10.1016/j.surfcoat.2006.01.028

    Article  CAS  Google Scholar 

  9. Campazzi E, Goletto V, Sanchez C (2007) Use of a nanostructured material, as protective coating of metal surfaces. WO 2007/119023 A2

  10. Guo XH, An MZ (2010) Experimental study of electrochemical corrosion behaviour of bilayer on AZ31B Mg alloy. Corros Sci 52(12):4017–4027. doi:10.1016/j.corsci.2010.08.017

    Article  CAS  Google Scholar 

  11. Schmidt H, Scholze H, Kaiser A (1984) Principles of hydrolysis and condensation reaction of alkoxysilanes. J Non-Cryst Solids 63(1–2):1–11. doi:10.1016/0022-3093(84)90381-8

    Article  CAS  Google Scholar 

  12. Pu ZC, vanOoij WJ, Mark JE (1997) Hydrolysis kinetics and stability of bis(triethoxysilyl)ethane in water–ethanol solution by FTIR spectroscopy. J Adhes Sci Technol 11(1):29–47. doi:10.1163/156856197X01001

    Article  CAS  Google Scholar 

  13. Wen JY, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater 8(8):1667–1681. doi:10.1021/cm9601143

    Article  CAS  Google Scholar 

  14. Van Ooij W, Zhu D, Stacy M, Seth A, Mugada T, Gandhi J, Puomi P (2005) Corrosion protection properties of organofunctional silanes—an overview. Tsinghua Sci Technol 10(6):639–664. doi:10.1016/S1007-0214(05)70134-6

    Article  Google Scholar 

  15. Osterholtz FD, Pohl ER (1992) Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J Adhes Sci Technol 6(1):127–149. doi:10.1163/156856192X00106

    Article  CAS  Google Scholar 

  16. Arkles B, Steinmetz JR, Zazyczny J, Mehta P (1992) Factors contributing to the stability of alkoxysilanes in aqueous-solution. J Adhes Sci Technol 6(1):193–206. doi:10.1163/156856192X00133

    Article  CAS  Google Scholar 

  17. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  18. Correa PS, Malfatti CF, Azambuja DS (2011) Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane doped with cerium ions. Prog Org Coat 72(4):739–747. doi:10.1016/j.porgcoat.2011.08.005

    Article  CAS  Google Scholar 

  19. Aramaki K (2001) Treatment of zinc surface with cerium(III) nitrate to prevent zinc corrosion in aerated 0.5 M NaCl. Corros Sci 43(11):2201–2215. doi:10.1016/S0010-938X(00)00189-X

    Article  CAS  Google Scholar 

  20. Onofre-Bustamante E, Dominguez-Crespo MA, Torres-Huerta AM, Olvera-Martinez A, Genesca-Llongueras J, Rodriguez-Gomez FJ (2009) Characterization of cerium-based conversion coatings for corrosion protection of AISI-1010 commercial carbon steel. J Solid State Electrochem 13(11):1785–1799. doi:10.1007/s10008-009-0871-9

    Article  CAS  Google Scholar 

  21. Fahrenholtz WG, O’Keefe MJ, Zhou HF, Grant JT (2002) Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surf Coat Technol 155(2–3):208–213. doi:10.1016/s0257-8972(02)00062-2

    Article  CAS  Google Scholar 

  22. Pepe A, Aparicio M, Cere S, Duran A (2004) Preparation and characterization of cerium doped silica sol–gel coatings on glass and aluminum substrates. J Non-Cryst Solids 348:162–171. doi:10.1016/j.jnoncrysol.2004.08.141

    Article  CAS  Google Scholar 

  23. Cere S, Pepe A, Aparicio M, Duran A (2006) Cerium hybrid silica coatings on stainless steel AISI 304 substrate. J Sol–Gel Sci Technol 39(2):131–138. doi:10.1007/s10971-006-9173-1

    Article  Google Scholar 

  24. Wang H, Akid R (2008) Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol–gel coatings on mild steel. Corros Sci 50(4):1142–1148. doi:10.1016/j.corsci.2007.11.019

    Article  CAS  Google Scholar 

  25. Rubio F, Rubio J, Oteo JL (1998) A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc Lett 31(1):199–219. doi:10.1080/00387019808006772

    Article  CAS  Google Scholar 

  26. Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316(2–3):309–319. doi:10.1016/S0022-3093(02)01637-X

    Article  CAS  Google Scholar 

  27. Zucchi F, Grassi V, Frignani A, Trabanelli G, Monticelli C (2007) Octadecyl-trimethoxy-silane film formed on copper in different conditions. Mater Chem Phys 103(2–3):340–344. doi:10.1016/j.matchemphys.2007.02.050

    Article  CAS  Google Scholar 

  28. Brinker CJ (1988) Hydrolysis and Condensation of Silicates—Effects on Structure. J Non-Cryst Solids 100(1–3):31–50. doi:10.1016/0022-3093(88)90005-1

    Article  CAS  Google Scholar 

  29. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer, New York

    Book  Google Scholar 

  30. Song J, Van Ooij WJ (2003) Bonding and corrosion protection mechanisms of gamma-APS and BTSE silane films on aluminum substrates. J Adhes Sci Technol 17(16):2191–2221. doi:10.1163/156856103772150788

    Article  CAS  Google Scholar 

  31. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New Jersey

    Google Scholar 

  32. Peng S, Zeng Z, Zhao W, Li H, Xue Q, Wu X (2012) Synergistic effect of thiourea in epoxy functionalized silica sol–gel coating for copper protection. Surf Coat Technol 213:175–192. doi:10.1016/j.surfcoat.2012.10.043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (51105356), the Zhejiang Provincial Natural Science Foundation (Y4100488), the Ningbo Natural Science Foundation (2011A610160) and the “Outstanding Talent Recruiting Program” (2009A31004) dedicated to Academician Qunji Xue from Ningbo Municipal Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Zhao, W., Zeng, Z. et al. Preparation of anticorrosion hybrid silica sol–gel coating using Ce(NO3)3 as catalyst. J Sol-Gel Sci Technol 66, 133–138 (2013). https://doi.org/10.1007/s10971-013-2976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-2976-y

Keywords

Navigation