Skip to main content
Log in

Mesoporous Silica Gel Doped with Dysprosium, Lanthanum and Modified with Silver as a Catalyst for Selective Hydrogenation of a 1-Heptyne/1-Heptene Mixture

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mesoporous silica gel doped with dysprosium, lanthanum and modified with silver (Dy-Ag/MPS, La-Ag/MPS) was obtained by the template method. The physicochemical characteristics of the obtained catalyst were studied by scanning electron microscopy, X-ray fluorescence and X-ray diffraction analysis, inductively coupled plasma mass spectrometry and temperature-programmed reduction. In addition, the possibility of using obtained materials as an efficient and selective catalysts in the hydrogenation of a 1-heptyne/1-heptene mixture (with 30% of alkyne content) in a temperature range of 140–160 °C and a hydrogen pressure of 3 atm was studied. It was found that after 15 min from the start of the hydrogenation reaction at 140 °C on the La-Ag/MPS catalyst, total conversion of 1-heptyne was observed and selectivity for 1-heptene was 84%. Moreover, it was shown that on a Dy-Ag/MPS at 150 °C 1-heptyne conversion was 84%, the selectivity for alkene was 79%. Furthermore, with an increase in temperature to 160 °C, the conversion of 1-heptyne reaches 95%, the selectivity for 1-heptene—84%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References:

  1. Delannoy L, Thrimurthulu G, Reddy PS, Méthivier C, Nelayah J, Reddy BM, Louis C (2014) Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold–copper catalysts prepared by deposition–precipitation. Phys Chem Chem Phys 16(48):26514–26527

    Article  CAS  PubMed  Google Scholar 

  2. El Kolli N, Delannoy L, Louis C (2013) Bimetallic Au–Pd catalysts for selective hydrogenation of butadiene: influence of the preparation method on catalytic properties. J Catal 297:79–92

    Article  CAS  Google Scholar 

  3. Tada M, Sasaki T, Iwasawa Y (2002) Performance and kinetic behavior of a new SiO2-attached molecular-imprinting Rh-dimer catalyst in size-and shape-selective hydrogenation of alkenes. J Catal 211(2):496–510

    Article  CAS  Google Scholar 

  4. da Silva FP, Fiorio JL, Gonçalves RV, Teixeira-Neto E, Rossi LM (2018) Synergic effect of copper and palladium for selective hydrogenation of alkynes. Ind Eng Chem Res 57(48):16209–16216

    Article  Google Scholar 

  5. Nikolaev SA, Smirnov VV (2009) Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites. Catal Today 147:S336–S341

    Article  CAS  Google Scholar 

  6. D’Agostino C, Ryabenkova Y, Miedziak PJ, Taylor SH, Hutchings GJ, Gladden LF, Mantle MD (2014) Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1, 2-propanediol. Catal Sci Technol 4(5):1313–1322

    Article  CAS  Google Scholar 

  7. Lu Y, Feng X, Takale BS, Yamamoto Y, Zhang W, Bao M (2017) Highly selective semihydrogenation of alkynes to alkenes by using an unsupported nanoporous palladium catalyst: no leaching of palladium into the reaction mixture. ACS Catal 7(12):8296–8303

    Article  CAS  Google Scholar 

  8. Oger C, Balas L, Durand T, Galano JM (2013) Are alkyne reductions chemo-, regio-, and stereoselective enough to provide pure (Z)-olefins in polyfunctionalized bioactive molecules? Chem Rev 113(3):1313–1350

    Article  CAS  PubMed  Google Scholar 

  9. Ertl G, Knözinger H, Schüth F, Weitkamp J (1997) Handbook of heterogeneous catalysts. V. 5. VCH. Weinheim

  10. Khrenov EG, Perminova EA, Falkov IG (1993) Catalysts and processes of selective hydrogenation in the petrochemical and chemical industries. Series: synthetic rubber industry. M.: TsNIITEneftekhim, vol 2. pp 67 (Russian)

  11. Asao N, Hatakeyama N, Menggenbateer MT, Ito E, Hara M, Kim Y, Yamamoto Y, Chen M, Zhang W, Inoue A (2012) Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chem Commun 48:4540–4542

  12. Karpov SI, Roessner F, Selemenev VF, Gulbin SS et al (2013) Prospects for the synthesis and use of ordered mesoporous materials in sorption-chromatographic analysis, separation and concentration of physiologically active substances (review). Sorpt Chromatogr Process 13(2):125–140

    CAS  Google Scholar 

  13. Han P, Liu T, Ji X, Tang S (2017) Morphology-controlled synthesis of mesoporous silica with co-template of surfactant P123 and ionic liquid [Dmim]Cl. Chin Chem Lett 29:751–755

    Google Scholar 

  14. Pagar NS et al (2021) Synthesis, characterization and catalytic study of mesoporous carbon materials prepared via mesoporous silica using non-surfactant templating agents. J Porous Mater 28(2):423–433

    Article  CAS  Google Scholar 

  15. Fapojuwo DP, Akinnawo CA, Oseghale CO, Meijboom R (2022) Tailoring the surface wettability of mesoporous silica for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde in a pickering emulsion system. Colloids Surf A 655:130231

    Article  CAS  Google Scholar 

  16. Yin D, Ji R, Yu S, Li L, Liu S, Jiang L, Liu Y (2022) Metal-acid interface encapsulated in hybrid mesoporous silica for selective hydrogenation of phenol to cyclohexanone. Mol Catal 530:112526

    Article  CAS  Google Scholar 

  17. Li Z, Hu M, Liu J, Wang W, Li Y, Fan W, Li Y (2022) Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res 15:1–10

    Google Scholar 

  18. Rasouli M, Yaghobi N (2022) Bifunctional ZnO/HZSM-5 catalysts in direct hydrogenation of CO2 to aromatics; influence of preparation method. Catal Lett 15:1–14

    Google Scholar 

  19. Li Z, Hu M, Liu B, Liu J, Wang P, Yao J, Song W (2021) Pd-Zn alloy nanoparticles encapsulated into mesoporous silica with confinement effect for highly selective semi-hydrogenation of phenylacetylene. ChemCatChem 13(3):868–873

    Article  CAS  Google Scholar 

  20. Shafigulin RV, Filippova EO, Shmelev AA, Bulanova AV (2019) Mesoporous silica doped with dysprosium and modified with nickel: a highly efficient and heterogeneous catalyst for the hydrogenation of benzene, ethylbenzene and xylenes. Catal Lett 149:916–928

    Article  CAS  Google Scholar 

  21. Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Liu X (2022) Rare-earth doping in nanostructured inorganic materials. Chem Rev 122(6):5519–5603

    Article  CAS  PubMed  Google Scholar 

  22. Sibu CP, Kumar SR, Mukundan P, Warrier KGK (2002) Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide. Chem Mater 14(7):2876–2881

    Article  CAS  Google Scholar 

  23. Zykin MA, Dyakonov AK, Eliseev AA, Trusov LA, Kremer RK, Dinnebier RE, Kazin PE (2021) Tb-based silicate apatites showing slow magnetization relaxation with identical parameters for the Tb 3+ and Dy 3+ counter ions. RSC Adv 11(12):6926–6933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang X, Wei Y, Jiang Y, Wang Y, Chen L, Peng L, Yan Y (2021) High efficiency phosphate removal was achieved by lanthanum-modified mesoporous silica aerogels with cellulose-guided templates. Ind Eng Chem Res 60(15):5352–5363

    Article  CAS  Google Scholar 

  25. Wang Z, Yu S (2016) Synthesis of high-stability acidic Ce3+(La3+ or Sm3+)~ β/Al-MCM-41 and the catalytic performance for the esterification of oleic acid. Catal Commun 84:108–111

    Article  CAS  Google Scholar 

  26. Costa JAS, de Jesus RA, Dorst DD, Pinatti IM, Oliveira LMDR, de Mesquita ME, Paranhos CM (2017) Photoluminescent properties of the europium and terbium complexes covalently bonded to functionalized mesoporous material PABA-MCM-41. J Lumin 192:1149

    Article  CAS  Google Scholar 

  27. Han Y, Wen B, Zhu M, Dai B (2018) Lanthanum incorporated in MCM-41 and its application as a support for a stable Ni-based methanation catalyst. J Rare Earths 36:367–373

    Article  CAS  Google Scholar 

  28. Filippova EO, Shafigulin RV, Bulanova AV (2021) Kinetic characteristics of catalysts based on mesoporous silica gel doped with Dy and modified with Ni, Cu, Ag, in hydrogenation of xylenes. Russ J Phys Chem A 95(4):690–695

    Article  CAS  Google Scholar 

  29. Uttamaprakrom W, Reubroycharoen P, Charoensiritanasin P, Tatiyapantarak J, Srifa A, Koo-Amornpattana W, Ratchahat S (2021) Development of Ni–Ce/Al-MCM-41 catalysts prepared from natural kaolin for CO2 methanation. J Environ Chem Eng 9(5):106150

    Article  CAS  Google Scholar 

  30. Wei N, Zheng X, Li Q, Gong C, Ou H, Li Z (2020) Construction of lanthanum modified MOFs graphene oxide composite membrane for high selective phosphorus recovery and water purification. J Colloid Interface Sci 565:337–344

    Article  CAS  PubMed  Google Scholar 

  31. Molaei S, Ghadermazi M (2020) Selective and efficient oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides catalyzed with praseodymium (III) and dysprosium (III) isonicotinamide (INA) complexes grafted onto modified mesoporous MCM-41. Solid State Sci 100:106091

    Article  CAS  Google Scholar 

  32. Lin H, Tang X, Wang J, Zeng Q, Chen H, Ren W, Zhang H (2021) Enhanced visible-light photocatalysis of clofibric acid using graphitic carbon nitride modified by cerium oxide nanoparticles. J Hazard Mater 405:124204

    Article  CAS  PubMed  Google Scholar 

  33. Shmelev AA, Shafigulin RV, Bulanova AV (2022) Dysprosium-doped mesoporous TiO2 as an effective photocatalyst for the oxidation of methyl orange, o-and m-xylenes. React Kinet Mech Catal 135(2):1047–1058

    Article  CAS  Google Scholar 

  34. Grzelak K, Trejda M, Gurgul J (2022) Impact of cerium oxide on the state and hydrogenation activity of ruthenium species incorporated on mesocellular foam silica. Materials 15(14):4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Znak L, Stołecki K, Zieliński J (2005) The effect of cerium, lanthanum and zirconium on nickel/alumina catalysts for the hydrogenation of carbon oxides. Catal Today 101(2):65–71

    Article  CAS  Google Scholar 

  36. Tokranov AA, Tokranova EO, Shagifulin RV, Pavlova LV, Mukhanova IM, Platonov IA, Bulanova AV (2023) Selective hydrogenation of 1-hexyne/1-hexene mixture on mesoporous silica gel doped with dysprosium, lanthanum, and modified with silver. React Kinet Mech Catal 136:217–231

    Article  CAS  Google Scholar 

  37. Kot M, Wojcieszak R, Janiszewska E, Pietrowski M, Zieliński M (2021) Effect of modification of amorphous silica with ammonium agents on the physicochemical properties and hydrogenation activity of Ir/SiO2 catalysts. Materials 14(4):968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spennati E, Riani P, Garbarino G (2023) A perspective of lanthanide promoted Ni-catalysts for CO2 hydrogenation to methane: catalytic activity and open challenges. Catal Today 418:114131

    Article  CAS  Google Scholar 

  39. Dobrovolna Z, Kacher P, Cherveny L (1998) Competitive hydrogenation in alkene-alkyne-diene systems with palladium and platinum. J Catal A Chem 130:279–284. https://doi.org/10.1016/S1381-1169(97)00219-7

    Article  CAS  Google Scholar 

  40. Matar S, Hatch LF (2001) Chemistry of petrochemical processes. Chapter nine: C4 olefins and diolefins based chemicals, 2nd edn. Elsevier, Amsterdam, pp 238–261

  41. Zhang F, Huang X (2008) Preprints—American ChemicalSociety. Div Pet Chem 53(1):129

    Google Scholar 

  42. Hugon A, Delannoy L, Louis C (2008) Supported gold catalysts for selective hydrogenation of 1, 3-butadiene in the presence of an excess of alkenes. Gold Bull 41:127–138

    Article  CAS  Google Scholar 

  43. Sheng H, Zhang H, Ma H, Qian W, Ying W (2020) An effective Cu-Ag/HMS bimetallic catalyst for hydrogenation of methyl acetate to ethanol. Catal Today 358:122–128

    Article  CAS  Google Scholar 

  44. Prakash MG, Mahalakshmy R, Krishnamurthy KR, Viswanathan B (2016) Studies on Ni–M (M= Cu, Ag, Au) bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Catal Today 263:105–111

    Article  CAS  Google Scholar 

  45. Chanerika R, Shozi ML, Prato M, Friedrich HB (2022) The effect of organic modifiers on Ag/Al2O3 catalysts for the sequential hydrogenation of 1-octyne vs 1-octene. Mol Catal 525:112344

    Article  CAS  Google Scholar 

  46. Khan NA, Shaikhutdinov S, Freund HJ (2006) Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal Lett 108:159–164

    Article  CAS  Google Scholar 

  47. Choi Y, Kim HI, Moon GH, Jo S, Choi W (2016) Boosting up the low catalytic activity of silver for H2 production on Ag/TiO2 photocatalyst: thiocyanate as a selective modifier. ACS Catal 6(2):821–828

    Article  CAS  Google Scholar 

  48. Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T, Ilieva L, Iadakiev V (2002) Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production. Catal Today 75(1–4):169–175

    Article  CAS  Google Scholar 

  49. Dzwigaj S, Millot Y, Krafft JM, Popovych N, Kyriienko P (2013) Incorporation of silver atoms into the vacant T-atom sites of the framework of SiBEA zeolite as mononuclear Ag (I) evidenced by XRD, FTIR, NMR, DR UV–vis, XPS, and TPR. J Phys Chem C 117(24):12552–12559

    Article  CAS  Google Scholar 

  50. Chen D, Qu Z, Shen S, Li X, Shi Y, Wang Y, Wu J (2011) Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde. Catal Today 175(1):338–345

    Article  CAS  Google Scholar 

  51. Musi A, Massiani P, Brouri D, Trichard JM, Da Costa P (2009) On the characterisation of silver species for SCR of NOx with ethanol. Catal Lett 128:25–30

    Article  CAS  Google Scholar 

  52. Kung MC, Kung HH (2000) Lean NOx catalysis over alumina-supported catalysts. Top Catal 10:21–26

    Article  CAS  Google Scholar 

  53. Richter M, Bentrup U, Eckelt R, Schneider M, Pohl MM, Fricke R (2004) The effect of hydrogen on the selective catalytic reduction of NO in excess oxygen over Ag/Al2O3. Appl Catal B 51(4):261–274

    Article  CAS  Google Scholar 

  54. Klimova T, Calderón M, Ramı́rez J (2003) Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization. Appl Catal A 240(1–2):29–40

    Article  CAS  Google Scholar 

  55. Brunauer S, Deming LS, Deming W, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  CAS  Google Scholar 

  56. Al-Mubaddel FS, Kumar R, Sofiu ML, Frusteri F, Ibrahim AA, Srivastava VK, Al-Fatesh AS (2021) Optimizing acido-basic profile of support in Ni supported La2O3+ Al2O3 catalyst for dry reforming of methane. Int J Hydrog Energy 46(27):14225–14235

    Article  CAS  Google Scholar 

  57. Maccarrone MJ, Torres G, Lederhos C, Betti C, Badano JM, Quiroga M, Yori J (2012) Kinetic study of the partial hydrogenation of 1-heptyne over Ni and Pd supported on alumina. Hydrogenation 5:159–184

    Google Scholar 

  58. Lederhos CR, Badano JM, Quiroga ME, L’Argentière PC, Coloma-Pascual F (2010) Influence of Ni addition to a low-loaded palladium catalyst on the selective hydrogenation of 1-heptyne. Quim Nova 33:816–820

    Article  CAS  Google Scholar 

  59. Maccarrone M, Torres G, Lederhos C, Badano J, Vera C, Quiroga M, Yori J (2012) Kinetic study of the partial hydrogenation of 1-heptyne on tungsten oxide supported on alumina. J Chem Technol Biotechnol 87(11):1521–1528

    Article  CAS  Google Scholar 

  60. Al-Herz M, Simmons MJ, Wood J (2012) Selective hydrogenation of 1-heptyne in a mini trickle bed reactor. Ind Eng Chem Res 51(26):8815–8825

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Tokranova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors agree to the publication of the article data.

Research Involving Humans and/or Animals

Not applicable.

Consent to Participate

The authors agree to participate.

Consent for Publication

The authors agree for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokranov, A.A., Tokranova, E.O., Shafigulin, R.V. et al. Mesoporous Silica Gel Doped with Dysprosium, Lanthanum and Modified with Silver as a Catalyst for Selective Hydrogenation of a 1-Heptyne/1-Heptene Mixture. Catal Lett 154, 1684–1693 (2024). https://doi.org/10.1007/s10562-023-04429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04429-5

Keywords

Navigation