Skip to main content

Advertisement

Log in

Gold, palladium and gold–palladium supported on silica catalysts prepared by sol–gel method: synthesis, characterization and catalytic behavior in the ethanol steam reforming

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Noble-metal-based catalysts supported on silica (Au/SiO2, Pd/SiO2 and Au–Pd/SiO2) were prepared by the sol–gel method and were evaluated in the steam reforming of ethanol for hydrogen production. The catalysts were characterized by N2 physisorption (BET/BJH methods), X-ray diffraction, temperature programmed reduction analysis, H2 chemisorption, atomic absorption spectrophotometry and Raman spectroscopy. The structural characterization of the Au- and Pd-containing catalysts after calcination showed that the solids are predominantly formed by Au0, Pd0 and PdO species and was observed that the metallic Pd dispersion diminished in the presence of Au0. The results revealed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. The Pd/SiO2 catalyst showed the best performance among the catalysts tested at the highest reaction temperature (600 °C) due to the more effective action of the metallic active phase, which covers a greater area in this sample. At this same reaction temperature, the Au–Pd/SiO2 catalyst showed a significant deactivation, probably due to the lower Pd dispersion presented by this catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moharana MK, Nageswara RP, Khandekar S, Kunzru D (2011) Renew Sustain Energ Rev 15:524–533

    Article  CAS  Google Scholar 

  2. Cardona CA, Sánchez OJ (2007) Biol Technol 98:2415–2457

    Article  CAS  Google Scholar 

  3. Sánchez OJ, Cardona CA (2008) Biol Technol 99:5270–5295

    Article  Google Scholar 

  4. Piscina PR, Homs N (2008) Chem Soc Rev 37:2459–2467

    Article  Google Scholar 

  5. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Fuel 19:2098–2106

    CAS  Google Scholar 

  6. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39–49

    Article  CAS  Google Scholar 

  7. Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238–3247

    Article  CAS  Google Scholar 

  8. Ulrich DR (1990) J Non-Cryst Solids 121:465–469

    Article  CAS  Google Scholar 

  9. Seker E, Gulari E (2002) Appl Catal A 232:203–217

    Article  CAS  Google Scholar 

  10. Sales LS, Robles-Dutenhefner PA, Nunes DL, Mohallem NDS, Gusevskaya EV, Sousa EMB (2003) Mater Charact 50:95–99

    Article  CAS  Google Scholar 

  11. Robles-Dutenhefner PA, Silva MJ, Sales LS, Sousa EMB, Gusevskaya EV (2004) J Mol Catal A 217:139–144

    Article  CAS  Google Scholar 

  12. Magalhaes AAC, Nunes DL, Robles-Dutenhefner PA, Sousa EMB (2004) J Non Cryst Solids 34:8185–8189

    Google Scholar 

  13. Robles-Dutenhefner PA, Rocha KAD, Sousa EMB, Gusevskaya EV (2009) J Catal 265:72–79

    Article  CAS  Google Scholar 

  14. Kumar N, Smith ML, Spivey JJ (2012) J Catal 289:218–226

    Article  CAS  Google Scholar 

  15. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, Mccullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  16. Valkenberg MH, Holderich WF (2002) Catal Rev Sci Eng 44:321–374

    Article  CAS  Google Scholar 

  17. Fajula F, Brunel D (2001) Micropor Mesopor Mat 48:119–125

    Article  CAS  Google Scholar 

  18. Sasidharana M, Patra AK, Kiyozumi Y, Bhaumik A (2012) Chem Eng Sci 75:250–255

    Article  Google Scholar 

  19. Yin H, Ma Z, Zhu H, Chi M, Dai S (2010) Appl Catal A 386:147–156

    Article  CAS  Google Scholar 

  20. Zhang Y, Wang Y, Ji J, Wang J (2012) Int J Hydrogen Energy 37:17947–17953

    Article  CAS  Google Scholar 

  21. Li Z, Shi T, Guo L (2010) J Serb Chem Soc 75:385–394

    Article  CAS  Google Scholar 

  22. Konopny LW, Juan A, Damiani DE (1998) Appl Catal B 15:115–127

    Article  CAS  Google Scholar 

  23. Tonetto GM, Ferreira ML, Damiani DE (2003) J Mol Catal A 193:121–137

    Article  CAS  Google Scholar 

  24. Qian K, Huang W (2011) Catal Today 164:320–324

    Article  CAS  Google Scholar 

  25. Wang G, Yu X, Cao X, Li H, Zhang Z (2000) J Raman Spectrosc 31:1051–1055

    Article  CAS  Google Scholar 

  26. Shirley SC, Bell AT (1984) J Catal 89:433–441

    Article  Google Scholar 

  27. Otto K, Hubbard CP, Weber WH, Graham GW (1992) Appl Catal B 1:317–327

    Article  CAS  Google Scholar 

  28. Schafer H, Wiese U, Rinke K, Brendel K (1967) Angew Chem 6:253–254

    Article  Google Scholar 

  29. McBride JR, Hass KC, Weber WH (1991) Phys Rev B 44:5016–5028

    Article  CAS  Google Scholar 

  30. Kruk M, Jaroniec M (2001) Chem Mat 13:3169–3183

    Article  CAS  Google Scholar 

  31. Corma A (1997) Chem Rev 97:2373–2420

    Article  CAS  Google Scholar 

  32. Sheng PY, Bowmaker GA, Idriss H (2004) Appl Catal A 261:171–181

    Article  CAS  Google Scholar 

  33. Gazsi A, Kóos A, Bánsági T (2011) Solymosi F Catal Today 160:70–78

    Article  CAS  Google Scholar 

  34. Galvita VV, Semin GL, Belyaev VD, Semikolenov VA, Tsiakaras P, Sobyanin VA (2001) Appl Catal A 220:123–127

    Article  CAS  Google Scholar 

  35. Prasad JS, Dhand V, Himabindu V, Anjaneyulu Y, Jain PWK, Padya A (2010) Int J Hydrogen Energy 35:10977–10983

    Article  CAS  Google Scholar 

  36. Goula MA, Kontou SK, Tsiakaras PE (2004) App Catal B 49:135–144

    Article  CAS  Google Scholar 

  37. Hernández IP, Gochi-Ponce Y, Larios JLC, Fernández AM (2010) Int J Hydrogen Energy 35:12098

    Article  Google Scholar 

  38. Lima SM, Silva AM, Costa LOO, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2009) J Catal 268:268–281

    Article  Google Scholar 

  39. Almeida RM, Fajardo HV, Mezalira DZ, Nuernberg GB, Noda LK, Probst LFD, Carreño NLV (2006) J Mol Catal A 259:328–335

    Article  Google Scholar 

  40. Pereira EB, Homs N, Martí S, Fierro JLG, Piscina PR (2008) J Catal 257:206–214

    Article  CAS  Google Scholar 

  41. Jeong N, Lee J (2008) J Catal 260:217–226

    Article  CAS  Google Scholar 

  42. Wu C, Williams PT (2010) Environ Sci Technol 44:5993

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from CNPq, CAPES, FINEP and FAPEMIG (Brazil) is gratefully acknowledged. The authors wish to thank Dr. Jason G. Taylor (UFOP) for insightful discussion and for reviewing the manuscript for its English usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia A. Robles-Dutenhefner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, A.G.M., Robles-Dutenhefner, P.A., Dias, A. et al. Gold, palladium and gold–palladium supported on silica catalysts prepared by sol–gel method: synthesis, characterization and catalytic behavior in the ethanol steam reforming. J Sol-Gel Sci Technol 67, 273–281 (2013). https://doi.org/10.1007/s10971-013-3076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3076-8

Keywords

Navigation