Skip to main content
Log in

Fabrication of hierarchical hollow silica/silver/silica/titania composite particles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hierarchical composite particles with hollow structure were fabricated in this work. The composite particles were composed of guest particles and host ones, which were achieved by Stöber method, and a raspberry-like morphology was produced by the “anchoring” of guest particles on the surface of host ones. Moreover, the hollow structure was obtained by template-assisted approach. The raspberry-like morphology and hollow structure of composite particles were confirmed by scanning electron microscopy and transmission electron microscopy. As multiple distinct functional components were integrated into the raspberry-like particles, the obtained composite particles exhibited enhanced photocatalytic activity under visible light irradiation. The rate of degradation of the as-prepared composite particles was ca. 13 times faster than that of pure TiO2 under visible light irradiation. Furthermore, a brief photocatalytic mechanism was presented. The composite particles, combining hierarchical morphology and hollow structure, exhibit promising potential in self-cleaning and nanoreactor areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carcouët CCMC, Esteves ACC, Hendrix MMRM, van Benthem RATM, de With G (2014) Fine-tuning of superhydrophobicity based on monolayers of well-defined raspberry nanoparticles with variable dual-roughness size and ratio. Adv Funct Mater 24(36):5745–5752

    Article  Google Scholar 

  2. Chen L, Bai B (2013) Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres. Ind Eng Chem Res 52(44):15568–15577

    Article  Google Scholar 

  3. Lee D, Hong JW, Park C, Lee H, Lee JE, Hyeon T, Paik SR (2014) Ca2+-dependent intracellular drug delivery system developed with “raspberry-type” particles-on-a-particle comprising mesoporous silica core and α-synuclein-coated gold nanoparticles. ACS Nano 8(9):8887–8895

    Article  Google Scholar 

  4. Cano M, de la Cueva-Mendez G (2015) Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy–amine coupling chemistry. Chem Commun 51(17):3620–3622

    Article  Google Scholar 

  5. Hu J, Chen M, Fang X, Wu L (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40(11):5472–5491

    Article  Google Scholar 

  6. Dergunov SA, Durbin J, Pattanaik S, Pinkhassik E (2014) pH-Mediated catch and release of charged molecules with porous hollow nanocapsules. J Am Chem Soc 136(6):2212–2215

    Article  Google Scholar 

  7. Oh A, Baik H, Choi DS, Cheon JY, Kim B, Kim H, Kwon SJ, Joo SH, Jung Y, Lee K (2015) Skeletal octahedral nanoframe with cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core-shell nanocrystal. ACS Nano 9(3):2856–2867

    Article  Google Scholar 

  8. Gupta N, Badhwar N, Pal B (2013) Fabrication of hollow SiO2 and Au (core)–SiO2 (shell) nanostructures of different shapes by CdS template dissolution. J Sol-Gel Sci Technol 68(2):284–293

    Article  Google Scholar 

  9. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  Google Scholar 

  10. Ding D, Liu K, He S, Gao C, Yin Y (2014) Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett 14(11):6731–6736

    Article  Google Scholar 

  11. Shiraishi Y, Sakamoto H, Fujiwara K, Ichikawa S, Hirai T (2014) Selective photocatalytic oxidation of aniline to nitrosobenzene by Pt nanoparticles supported on TiO2 under visible light irradiation. ACS Catal 4(8):2418–2425

    Article  Google Scholar 

  12. Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H (2014) Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136(45):15969–15976

    Article  Google Scholar 

  13. Gunasekar V, Divya B, Brinda K, Vijaykrishnan J, Ponnusami V, Rajan KS (2013) Enzyme mediated synthesis of Ag–TiO2 photocatalyst for visible light degradation of reactive dye from aqueous solution. J Sol-Gel Sci Technol 68(1):60–66

    Article  Google Scholar 

  14. Herrmann JM, Tahiri H, Ait-Ichou Y, Lassaletta G, González-Elipe AR, Fernández A (1997) Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz. Appl Catal B 13(3–4):219–228

    Article  Google Scholar 

  15. Butburee T, Bai Y, Pan J, Zong X, Sun C, Liu G, Wang L (2014) Step-wise controlled growth of metal@TiO2 core-shells with plasmonic hot spots and their photocatalytic properties. J Mater Chem A 2(32):12776–12784

    Article  Google Scholar 

  16. Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133(14):5202–5205

    Article  Google Scholar 

  17. Padikkaparambil S, Yaakob Z, Narayanan B, Ramakrishnan R, Viswanathan S (2012) Novel preparation method of nanosilver doped sol gel TiO2 photocatalysts for dye pollutant degradation. J Sol-Gel Sci Technol 63(1):108–115

    Article  Google Scholar 

  18. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680

    Article  Google Scholar 

  19. Romanyuk A, Oelhafen P (2007) Formation and electronic structure of interface. Sol Energ Mater Sol C 91(12):1051–1054

    Article  Google Scholar 

  20. Kerker M (1985) The optics of colloidal silver: something old and something new. J Colloid Interf Sci 105(2):297–314

    Article  Google Scholar 

  21. Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901

    Article  Google Scholar 

  22. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26(1):62–69

    Article  Google Scholar 

  23. Li W, Yang J, Wu Z, Wang J, Li B, Feng S, Deng Y, Zhang F, Zhao D (2012) A versatile kinetics-controlled coating method to construct uniform porous TiO2 Shells for multifunctional core-shell structures. J Am Chem Soc 134(29):11864–11867

    Article  Google Scholar 

  24. Chen M, Wu L, Zhou S, You B (2006) A method for the fabrication of monodisperse hollow silica spheres. Adv Mater 18(6):801–806

    Article  Google Scholar 

  25. Bardhan R, Grady NK, Halas NJ (2008) Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. Small 4(10):1716–1722

    Article  Google Scholar 

  26. Wu Q, Wang Z, Kong X, Gu X, Xue G (2008) A facile strategy for controlling the self-assembly of nanocomposite particles based on colloidal steric stabilization theory. Langmuir 24(15):7778–7784

    Article  Google Scholar 

  27. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31(2):145–157

    Article  Google Scholar 

  28. Linic S, Aslam U, Boerigter C, Morabito M (2015) Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 14(6):567–576

    Article  Google Scholar 

  29. Govorov A, Lee J, Kotov N (2007) Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys Rev B 76(12):125308

    Article  Google Scholar 

  30. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Shandong Province Natural Science Foundation (ZR2012EMM009 and ZR2013EMQ005), the Scientific Research Foundation for the Returned Overseas Scholars in Jinan (20100406), National Natural Science Foundations of China (51372140, 51303086, and 51172132), the Youth Scientist Funds of Shandong Province (BS2013NJ006), and Jinan Science & Technology Youth-Star Program (2013034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Liang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Liu, JQ., Liu, WL. et al. Fabrication of hierarchical hollow silica/silver/silica/titania composite particles. J Sol-Gel Sci Technol 77, 565–573 (2016). https://doi.org/10.1007/s10971-015-3884-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3884-0

Keywords

Navigation