Skip to main content
Log in

Fabrication of hollow SiO2 and Au (core)–SiO2 (shell) nanostructures of different shapes by CdS template dissolution

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Core–shell silica (SiO2) coated CdS nanorods (NR) and nanospheres (NS) were prepared (SiO2@CdS) by deposition of a Si–O–Si amorphous layer over the CdS surface through the hydrolysis of 3-mercaptopropyltrimethoxysilane and tetraethylorthosilicate. Nanoporous SiO2 matrix (NPSM), hollow SiO2 nanotubes (HSNT) and nanospheres (HSNS) useful for efficient adsorption and catalytic processes were prepared by chemical dissolution of CdS–NS (size: 9–10 nm) and CdS–NR (length: 116–128 nm and width: 6–11 nm) template from SiO2@CdS with 2 M HNO3. These SiO2 nanostructures were characterized by optical absorption, TEM, EDX, SAED and BET surface area analysis. TEM images revealed the fabrication of slightly distorted HSNS (size: 9–12 nm) and closed HSNT (length: 30–45 nm and diameter: 9–14 nm) of shorter dimensions than the CdS–NR template used. The BET surface area (112–134 m2 g−1) of NPSM and HSNS is found to be larger than the surface area (29–51 m2 g−1) of SiO2@CdS composites indicating hollow SiO2 morphology. Silica coated Au (SiO2@Au) composites formed by CdS dissolution from Au (2 wt%) deposited CdS–NR core-encapsulated into SiO2 shell (SiO2@Au–CdS–NR) exhibited a surface plasmon band at 550 nm and displayed high catalytic activity for 4-nitrophenol reduction by Au nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1 and 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu S, Rao J, Sui X, Cool P, Vansant EF, Tendeloo GV, Cheng X (2008) J Non Cryst Solids 354:826–830

    Article  CAS  Google Scholar 

  2. Miyao T, Minoshima K, Naito S (2005) J Mater Chem 15:2268–2270

    Article  CAS  Google Scholar 

  3. Hah HJ, Um JI, Han SH, Koo SM (2004) Chem Commun (8):1012–1013

  4. Chen JF, Ding HM, Wang JX, Shao L (2004) Biomaterials 25:723–727

    Article  Google Scholar 

  5. Bae E, Chah S, Yi J (2000) J Colloid Interface Sci 30:367–376

    Article  Google Scholar 

  6. Taniguchi T, Obi S, Kamata Y, Kashiwakura T, Kasuya M, Ogawa T, Kohri M, Nakahira T (2012) J Colloid Interface Sci 368:107–114

    Article  CAS  Google Scholar 

  7. Teng F, Tian Z, Xiong G, Xu Z (2004) Catal Today 93–95:651–657

    Article  Google Scholar 

  8. Chah S, Fendler JH, Yi J (2002) J Colloid Interface Sci 250:142–148

    Article  CAS  Google Scholar 

  9. Hui YZ, Bin CH, Zhong J, Wei ZW, Yan L (2010) Chin Sci Bull 55:921–926

    Article  Google Scholar 

  10. Mitchell DT, Lee SB, Trofin L, Li N, Nevaanen TK, Soderlund H, Martin CR (2002) J Am Chem Soc 124:11864–11865

    Article  CAS  Google Scholar 

  11. Yoon JH, Chae WS, Cho HM, Choi MG, Kim YR (2006) Mater Res Bull 41:1657–1663

    Article  CAS  Google Scholar 

  12. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Langmuir 25:13840–13851

    Article  CAS  Google Scholar 

  13. Tao AR, Habas S, Yang P (2008) Small 4:310–325

    Article  CAS  Google Scholar 

  14. Wu SH, Tseng CT, Lin YS, Lin CH, Hung Y, Mou CY (2011) J Mater Chem 21:789–794

    Article  CAS  Google Scholar 

  15. Park JC, Song H (2011) Nano Res 4:33–49

    Article  CAS  Google Scholar 

  16. Pal B, Torimoto T, Ikeda S, Shibayama T, Sugawara K, Takahashi H, Ohtani B (2005) Top Catal 35:321–325

    Article  CAS  Google Scholar 

  17. Pal B, Torimoto T, Iwasaki K, Shibayama T, Takahashi H, Ohtani B (2005) J Appl Electrochem 35:751–756

    Article  CAS  Google Scholar 

  18. Wei C, Zhou W, Du Y, Xu J, Yang P (2010) Colloid J 72:158–162

    Article  CAS  Google Scholar 

  19. Pal B, Torimoto, T, Okazaki, K, Ohtani, B (2007) Chem Commun (5):483–485

  20. Torimoto T, Reyes JP, Iwasaki K, Pal B, Shibayama T, Sugawara K, Takahashi H, Ohtani B (2003) J Am Chem Soc 125:316–317

    Article  CAS  Google Scholar 

  21. Lin YS, Wu SH, Tseng CT, Hung Y, Chang C, Mou CY (2009) Chem Commun (24):3542–3544

  22. Gupta N, Pal B (2012) J Colloid Interface Sci 368:250–256

    Article  CAS  Google Scholar 

  23. Torimoto T, Hashitani M, Konishi T, Okazaki K, Shibayama T, Ohtani B (2009) J Nanosci Nanotechnol 9:506–513

    Article  CAS  Google Scholar 

  24. Yang H (2006) Met Mater Inter 12:351–355

    Article  CAS  Google Scholar 

  25. Chang SY, Liu L, Asher SA (1994) J Am Chem Soc 116:6739–6744

    Article  CAS  Google Scholar 

  26. Henglein A (1982) J Phys Chem 86:2291–2293

    Article  CAS  Google Scholar 

  27. Dijken AV, Janssen AH, Smitsmans HP, Vanmaekelbergh D, Meijerink A (1998) Chem Mater 10:3513–3522

    Article  Google Scholar 

  28. Arellano MA, Ung T, Blanco A, Mulvaney P, Marzán LML (2000) Pure Appl Chem 72:257–267

    Article  Google Scholar 

  29. Chen X, Berger A, Ge M, Hopfe S, Dai N, Gosele U, Schlecht S, Steinhart M (2011) Chem Mater 23:3129–3131

    Article  CAS  Google Scholar 

  30. Bergbreiter DE (1999) Angew Chem Int Ed 38:2870–2872

    Article  CAS  Google Scholar 

  31. Liu MP, Li CH, Du HB, You XZ (2012) Chem Commun 48:4950–4952

    Article  CAS  Google Scholar 

  32. Saunders AE, Popov I, Banin U (2006) J Phys Chem B 110:25421–25429

    Article  CAS  Google Scholar 

  33. Khon E, Mereshchenko A, Tarnovsky AN, Acharya K, Klinkova A, Hewa-Kasakarage NN, Nemitz I, Zamkov M (2011) Nano Lett 11:1792–1799

    Article  CAS  Google Scholar 

  34. Kaur R, Pal B (2012) J Mol Catal A Chem 355:39–43

    Article  CAS  Google Scholar 

  35. Kobayashi Y, Duarte MAC, Marza′n LML (2001) Langmuir 17:6375–6379

    Article  CAS  Google Scholar 

  36. Cong H, Toftegaard R, Arnbjerg J, Ogilby PR (2010) Langmuir 26:4188–4195

    Article  CAS  Google Scholar 

  37. Pradhan N, Pal A, Pal T (2001) Langmuir 17:1800–1802

    Article  CAS  Google Scholar 

  38. Zhang Z, Shao C, Zou P, Zhang P, Zhang M, Mu J, Guo Z, Li X, Wang C, Liu Y (2011) Chem Commun 47:3906–3908

    Article  CAS  Google Scholar 

  39. Chang G, Luo Y, Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X (2012) Catal Sci Technol 2:800–806

    Article  CAS  Google Scholar 

  40. Chen J, Dai RJ, Tong B, Xiao SY, Meng WW (2007) Chin Chem Lett 18:10–12

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Department of Science and Technology (DST), Govt. of India, for providing financial support for this work. We also thank Dr. Satnam Singh and Mr. Inderpreet Singh Grover for their timely help in surface area measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonamali Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Badhwar, N. & Pal, B. Fabrication of hollow SiO2 and Au (core)–SiO2 (shell) nanostructures of different shapes by CdS template dissolution. J Sol-Gel Sci Technol 68, 284–293 (2013). https://doi.org/10.1007/s10971-013-3165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3165-8

Keywords

Navigation