Skip to main content
Log in

A facile route for synthesis of CuInxGa1−xSe2 nanocrystals with tunable composition for photovoltaic application

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A facile colloidal synthesis of CuInxGa1−xSe2 (CIGS) nanocrystals was successfully performed using a simple heating method. These nanocrystals were prepared by employing glycerol as a main solvent and oleylamine (OLA) as a complexing agent. X-ray diffraction showed that CuInSe2 with a chalcopyrite structure was formed by using a volume content of OLA as small as ~30 %. No variation was found in the compound phase between samples synthesized in a mixed solvent with 30 % OLA and in 100 % OLA-added solvent. Transmission election microscopy confirmed the crystal structure and showed a particle sizes below 20 nm. Energy-dispersive X-ray analysis (EDS) confirmed the chemical composition of these samples. And UV–Vis spectroscopy investigated the band gap of CIGS nanoinks. Furthermore, we used this method to prepare CIGS nanocrystals with different band gap energies by varying the In/Ga ratio of the reactants. Therefore, this green and economic route proposed has the potential for large-scale synthesis of CIGS nanocrystals, which is beneficial to low-cost photovoltaic application.

Graphical abstract

XRD patterns and TEM images of CuInSe2 nanocrystals, obtained for samples synthesized with pure OLA and with mixed solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Devaney WE, Chen WS, Stewart JM, Mickelsen RA (1990) Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe2 solar cells. IEEE Trans Electron Devices 37(2):428–433. doi:10.1109/16.46378

    Article  Google Scholar 

  2. Scheer R, Walter T, Schock HW, Fearheiley ML, Lewerenz HJ (1993) CuInS2 based thin film solar cell with 10.2% efficiency. Appl Phys Lett 63(24):3294–3296. doi:10.1063/1.110786

    Article  Google Scholar 

  3. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovolt 16(3):235–239. doi:10.1002/pip.822

    Article  Google Scholar 

  4. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog Photovolt Res Appl 19(7):894–897. doi:10.1002/pip.1078

    Article  Google Scholar 

  5. Stolt L, Hedström J, Kessler J, Ruckh M, Velthaus KO, Schock HW (1993) ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl Phys Lett 62(6):597–599. doi:10.1063/1.108867

    Article  Google Scholar 

  6. Kong H, He J, Huang L, Zhu L, Sun L, Yang P, Chu J (2014) Effect of working pressure on growth of Cu(In, Ga)Se2 thin film deposited by sputtering from a single quaternary target. Mater Lett 116:75–78. doi:10.1016/j.matlet.2013.10.112

    Article  Google Scholar 

  7. Dhage SR, Tak M, Joshi SV (2014) Fabrication of CIGS thin film absorber by laser treatment of pre-deposited nano-ink precursor layer. Mater Lett 134:302–305. doi:10.1016/j.matlet.2014.07.107

    Article  Google Scholar 

  8. Li P-W, Zhou W-H, Hou Z-L, Wu S-X (2012) Synthesis of CuInxGa1−xSe2 nanocrystals for potential thin film photovoltaic application under air condition. Mater Lett 78:131–134. doi:10.1016/j.matlet.2012.03.058

    Article  Google Scholar 

  9. Wu Y, Wadia C, Ma W, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 8(8):2551–2555. doi:10.1021/nl801817d

    Article  Google Scholar 

  10. Guo Q, Ford GM, Agrawal R, Hillhouse HW (2013) Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In, Ga)(S, Se)2 solar cells from sulfide nanocrystal inks. Prog Photovolt Res Appl 21(1):64–71. doi:10.1002/pip.2200

    Article  Google Scholar 

  11. Eberspacher C, Pauls KL, Serra JP (2003) Non-vacuum thin-film CIGS modules. In: MRS online proceedings library vol. 763, pp null–null. doi:10.1557/PROC-763-B8.27

  12. Kruszynska M, Borchert H, Parisi J, Kolny-Olesiak J (2010) Synthesis and shape control of CuInS2 nanoparticles. J Am Chem Soc 132(45):15976–15986. doi:10.1021/ja103828f

    Article  Google Scholar 

  13. Wang J-J, Wang Y-Q, Cao F-F, Guo Y-G, Wan L-J (2010) Synthesis of monodispersed wurtzite Structure CuInSe2 nanocrystals and their application in high-performance organic–inorganic hybrid photodetectors. J Am Chem Soc 132(35):12218–12221. doi:10.1021/ja1057955

    Article  Google Scholar 

  14. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, Dodabalapur A, Barbara PF, Korgel BA (2008) Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J Am Chem Soc 130(49):16770–16777. doi:10.1021/ja805845q

    Article  Google Scholar 

  15. Li L, Pandey A, Werder DJ, Khanal BP, Pietryga JM, Klimov VI (2011) Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J Am Chem Soc 133(5):1176–1179. doi:10.1021/ja108261h

    Article  Google Scholar 

  16. Wang C-J, Shei S-C, Chang S-J (2014) Novel solution process for synthesis of CIGS nanoparticles using polyetheramine as solvent. Mater Lett 122:52–54. doi:10.1016/j.matlet.2014.01.172

    Article  Google Scholar 

  17. Jin HD, Chang C-H (2012) Synthesis of CuInSe2 nanocrystals using a continuous hot-injection microreactor. J Nanopart Res. doi:10.1007/s11051-012-1180-2

    Google Scholar 

  18. Tang J, Hinds S, Kelley SO, Sargent EH (2008) Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles. Chem Mater 20(22):6906–6910. doi:10.1021/cm801655w

    Article  Google Scholar 

  19. Guo Q, Kim SJ, Kar M, Shafarman WN, Birkmire RW, Stach EA, Agrawal R, Hillhouse HW (2008) Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett 8(9):2982–2987. doi:10.1021/nl802042g

    Article  Google Scholar 

  20. Der Wu J, Ting Wang L, Gau C (2012) Synthesis of CuInGaSe2 nanoparticles by modified polyol route. Sol Energy Mater Sol Cells 98:404–408. doi:10.1016/j.solmat.2011.11.044

    Article  Google Scholar 

  21. Stanbery BJ (2002) Copper indium selenides and related materials for photovoltaic devices. Crit Rev Solid State Mater Sci 27(2):73–117. doi:10.1080/20014091104215

    Article  Google Scholar 

  22. Rincón C, Ramírez FJ (1992) Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry. J Appl Phys 72(9):4321–4324. doi:10.1063/1.352195

    Article  Google Scholar 

  23. Su-Huai W, Zhang SB, Zunger A (1998) Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Appl Phys Lett 72(24):3199–3201. doi:10.1063/1.121548

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2013121031), Program for New Century Excellent Talents in Fujian Province University (NCETFJ), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Yun, D., Zhong, C. et al. A facile route for synthesis of CuInxGa1−xSe2 nanocrystals with tunable composition for photovoltaic application. J Sol-Gel Sci Technol 76, 469–475 (2015). https://doi.org/10.1007/s10971-015-3795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3795-0

Keywords

Navigation