Skip to main content
Log in

One-pot thermolysis synthesis of CuInS2 nanoparticles with chalcopyrite-wurtzite polytypism structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuInS2 nanoparticles as the visible (wurtzite, 1.67 eV) or near infrared (chalcopyrite, 1.50 eV) light absorbing material in thin film solar cells, were synthesized using facile, one step heating up method by dissolving of CuCl, InCl3 and SC(NH2)2 as precursors in oleylamine (OLA) alone or in combination with oleic acid (OA) and 1-octadecene (ODE) as solvent. The phase, size, morphology, and size distribution were controlled by the coordination ability between solvent molecules and metal precursors, reaction temperature and time. The presence of higher amounts of thiourea or OA to OLA led to the formation of chalcopyrite phase in comparison to wurtzite structure. Also, higher reaction temperatures (>240 °C) resulted in favour of more chalcopyrite phase and higher crystallinity but the nanoparticles got agglomerated. As synthesized nanoparticles was characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high resolution-transmission electronic microscopy, ultraviolet–visible-near infrared, photoluminescence. The high resolution TEM confirmed the existence of chalcopyrite structure along with wurtzite structure in the nanocrystal (polytypism). Well controlled chalcopyrite CuInS2 triangular pyramidal shape with an average size ranging from ~10–20 nm size was obtained by using 20 ml OLA or 20 ml OLA along with 4 ml OA and ODE, respectively, with 210 °C heating up and 4 h annealing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.H. Valdés, M. Berruet, A. Goossens, M. Vázquez, Spray deposition of CuInS2 on electrodeposited ZnO for low-cost solar cells. Surf. Coat. Tech. 204, 3995–4000 (2010)

    Article  Google Scholar 

  2. A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, R. Mahiou, Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index. ACS Appl. Mater. Interfaces. 6, 252–258 (2014)

    Article  Google Scholar 

  3. S. Tomic, L. Bernasconi, B.G. Searle, N.M. Harrison, Electronic and optical structure of wurtzite CuInS2. J. Phys. Chem. C 118, 14478–14484 (2014)

    Article  Google Scholar 

  4. K.T. Yong, I. Roy, R. Hu, H. Ding, H. Cai, J. Zhu, X. Zhang, E.J. Bergeya, P.N. Prasad, Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging. Integr. Biol. 2, 121–129 (2010)

    Article  Google Scholar 

  5. Y. Chen, S. Li, L. Huang, D. Pan, Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots. Inorg. Chem. 52, 7819–7821 (2013)

    Article  Google Scholar 

  6. H. Yoon, S.H. Na, J.Y. Choi, M.W. Kim, H. Kim, H.S. An, B.K. Min, S.J. Ahn, J.H. Yun, J. Gwak, K.H. Yoon, S.S. Kolekar, M.F.A.M.V. Hest, S.S. Al-Deyab, M.T. Swihart, S.S. Yoon, Carbon- and oxygen-free Cu(InGa)(SSe)2 solar cell with a 4.63% conversion efficiency by electrostatic spray deposition. ACS Appl. Mater. Interfaces 6, 8369–8377 (2014)

    Article  Google Scholar 

  7. D. Aldakov, A. Lefrancois, P. Reiss, Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756–3776 (2013)

    Article  Google Scholar 

  8. J. Kolny-Olesiak, H. Weller, Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces. 5, 12221–12237 (2013)

    Article  Google Scholar 

  9. N. Bao, X. Qiu, Y.H.A. Wang, Z. Zhou, X. Lu, C.A. Grimes, A. Gupta, Facile Thermolysis synthesis of CuInS2 nanocrystals with tunable anisotropic shape and structure. Chem. Commun. 47, 9441–9443 (2011)

    Article  Google Scholar 

  10. M. Gusain, P. Kumar, R. Nagarajan, Wurtzite CuInS2: solution based one pot direct synthesis and its doping studies with non-magnetic Ga3+ and magnetic Fe3+ ions. RSC Adv. 3, 18863–18871 (2013)

    Article  Google Scholar 

  11. F.B. Dejene, The structural and material properties of CuInSe2 and Cu(In, Ga)Se2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications. Sol. Energy Mater. Sol. Cells 93, 577–582 (2009)

    Article  Google Scholar 

  12. P.S. Vasekar, A.H. Jahagirdar, N.G. Dhere, Photovoltaic characterization of copper-indium-gallium sulfide (CIGS2) solar cells for lower absorber thicknesses. Thin Solid Films 518, 1788–1790 (2010)

    Article  Google Scholar 

  13. T. Koehler, S. Gledhill, A. Grimm, N. Allsop, C. Camus, A. Hänsel, W. Bohne, J. Röhrich, M. Lux-Steiner, C.H. Fischer, An Investigation of the dip-ion layer gas reaction process to produce ZnO films with increased deposition rates. Thin Solid Films 517, 3332–3339 (2009)

    Article  Google Scholar 

  14. T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, R. Klenk, Electro deposited In2S3 buffer layers for CuInS2 solar cells. Sol. Energy Mater. Sol. Cells 92, 1274–1278 (2008)

    Article  Google Scholar 

  15. R. Sharma, S. Shim, R.S. Mane, T. Ganesh, A. Ghule, G. Cai, D.H. Ham, S.K. Min, W. Lee, S.H. Han, Optimization of growth of ternary CuInS2 thin films by ionic reactions in alkaline chemical bath as n-Type photoabsorber layer. Mater. Chem. Phys. 116, 28–33 (2009)

    Article  Google Scholar 

  16. S.M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, K. Venkateswara-Rao, Microwave-assisted synthesis and photovoltaic measurements of CuInS2 nanoparticles prepared by using metal-organic precursors. Mater. Res. Bull. 47, 3148–3159 (2012)

    Article  Google Scholar 

  17. D.Y. Lee, J.H. Kim, Deposition of CuInS2 films by electrostatic field assisted ultrasonic spray pyrolysis. Sol. Energy Mater. Sol. Cells 95, 245–249 (2011)

    Article  Google Scholar 

  18. B. Koo, R.N. Patel, B.A. Korgel, Wurtzite-chalcopyrite polytypism in CuInS2 nanodisks. Chem. Mater. 21, 1962–1966 (2009)

    Article  Google Scholar 

  19. Y. Vahidshad, A. Irajizad, R. Ghasemzadeh, S.M. Mirkazem, A. Masoud, Structural and optical characterization of nanocrystalline CuAlS2 chalcopyrite synthesized by polyol method in autoclave. Int. J. Mod. Phys. B 26(1250179), 1–12 (2012)

    Google Scholar 

  20. Y. Vahidshad, R. Ghasemzadeh, A. Irajizad, S.M. Mirkazemi, Synthesis and characterization of copper indium sulfide chalcopyrite structure with hot injection method. J. Nanostruct. 3, 145–154 (2013)

    Google Scholar 

  21. J. Guo, W.H. Zhou, M. Li, Z.L. Hou, J. Jiao, Z.J. Zhou, S.X. Wu, Synthesis of bullet-like wurtzite CuInS2 nanocrystals under atmospheric conditions. J. Cryst. Growth 359, 72–76 (2012)

    Article  Google Scholar 

  22. D.H. Jara, S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem. Mater. 26, 7221–7228 (2014)

    Article  Google Scholar 

  23. Y. Vahidshad, M.N. Tahir, A. Irajizad, S.M. Mirkazemi, R. Ghasemzadeh, W. Tremel, Structural and optical properties of Fe and Zn substitution in CuInS2 nanoparticles synthesized by a one-pot facile method. J. Mater. Chem. C. 3, 889–898 (2015)

    Article  Google Scholar 

  24. W. Du, X. Qian, J. Yin, Q. Gong, Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem. Eur. J. 13, 8840–8846 (2007)

    Article  Google Scholar 

  25. Y. Vahidshad, R. Ghasemzadeh, A. Irajizad, S.M. Mirkazemi, A. Masoud, Solvothermal synthesis of CuMS2 (M = Al, In, Fe) nanoparticles and effect of coordinating solvent on the crystalline structur. Scientia Iranica. Trans. Nanotechol. 21, 2468–2478 (2014)

    Google Scholar 

  26. L. Shi, C. Pei, Q. Li, Ordered arrays of shape tunable CuInS2 nanostructures, from nanotubes to nano test tubes and nanowires. Nanoscale. 2, 2126–2130 (2010)

    Article  Google Scholar 

  27. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu, Synthesis of Cu–In–S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 130, 5620–5621 (2008)

    Article  Google Scholar 

  28. W.-C. Huang, C.-H. Tseng, S.-H. Chang, H.-Y. Tuan, C.-C. Chiang, L.-M. Lyu, M.H. Huang, Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application. Langmuir 28, 8496–8501 (2012)

    Article  Google Scholar 

  29. R.G. Pearson, Hard and soft acids and bases, HSAB, Part 1: fundamental principles. J. Chem. Educ. 45, 581–587 (1968)

    Article  Google Scholar 

  30. M. Kruszynska, H. Borchert, J. Parisi, J. Kolny-Olesiak, Synthesis and shape control of CuInS2 nanoparticles. J. Am. Chem. Soc. 132, 15976–15986 (2010)

    Article  Google Scholar 

  31. S.T. Connor, C.M. Hsu, B.D. Weil, S. Aloni, Y. Cui, Phase transformation of biphasic Cu2S − CuInS2 to monophasic CuInS2 nanorods. J. Am. Chem. Soc. 131, 4962–4966 (2009)

    Article  Google Scholar 

  32. Y. Qi, Q. Liu, K. Tang, Z. Liang, Z. Ren, X. Liu, Synthesis and characterization of nanostructured wurtzite CuInS2: a new cation disordered polymorph of CuInS2. J. Phys. Chem. C 113, 3939–3944 (2009)

    Article  Google Scholar 

  33. W. Yue, S. Han, R. Peng, W. Shen, H. Geng, F. Wu, S. Tao, M. Wang, CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J. Mater. Chem. 20, 7570–7578 (2010)

    Article  Google Scholar 

  34. S.T. Connor, B.D. Weil, S. Misra, Y. Cui, M.F. Toney, Behaviors of Fe, Zn, and Ga substitution in CuInS2 nanoparticles probed with anomalous X-ray diffraction. Chem. Mater. 25, 320–325 (2013)

    Article  Google Scholar 

  35. F. Gong, S. Tian, B. Liu, D. Xiong, X. Zhao, Oleic acid assisted formation mechanism of CuInS2 nanocrystals with tunable structures. RSC Adv. 4, 36875–36881 (2014)

    Article  Google Scholar 

  36. T. Yamamoto, I.V. Luck, R. Scheer, H.K. Yoshida, Differences in the electronic structure and compensation mechanism between n-Type Zn- and Cd-doped CuInS2 crystals. Phys. B 273–274, 927–929 (1999)

    Article  Google Scholar 

  37. J. Chang, E.R. Waclawik, Controlled synthesis of CuInS2, Cu2SnS3 and Cu2ZnSnS4 nanostructures: insight into the universal phase-selectivity mechanism. Cryst. Eng. Commun. 15, 5612–5619 (2013)

    Article  Google Scholar 

  38. G. Will, E. Hinze, A. Rahman, M. Abdelrahman, Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 °C under controlled sulfur partial pressure. Eur. J. Mineral. 14, 591–598 (2002)

    Article  Google Scholar 

  39. T. Kuzuya, Y. Hamanaka, K. Itoh, T. Kino, K. Sumiyama, Y. Fukunaka, S. Hirai, Phase control and its mechanism of CuInS2 nanoparticles. J. Colloid Interface Sci. 388, 137–143 (2012)

    Article  Google Scholar 

  40. M.B. Sigman Jr, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee, B.A. Korgel, Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J. Am. Chem. Soc. 125, 16050–16057 (2003)

    Article  Google Scholar 

  41. J.-J. Wang, J.-S. Hu, Y.-G. Guo, L.I.-J. Wan, Wurtzite Cu2ZnSnSe4 nanocrystalsfor high-performance organic-inorganic hybrid photodetectors. NPG Asia Mater. 4, 1–10 (2012)

    Article  Google Scholar 

  42. S. Kumar, T. Nann, Shape control of II–VI semiconductor nanomaterials. Small 2, 316–329 (2006)

    Article  Google Scholar 

  43. E. Witt, J. Kolny-Olesiak, Recent developments in colloidal synthesis of CuInSe2 nanoparticles. Chem. Eur. J. 19, 9746–9753 (2013)

    Article  Google Scholar 

  44. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010)

    Article  Google Scholar 

  45. E.V. Shevchenko, D.V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase, H. Weller, Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc. 125, 9090–9101 (2003)

    Article  Google Scholar 

  46. J. Chang, E.R. Waclawik, Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv. 4, 23505–23527 (2014)

    Article  Google Scholar 

  47. Z.L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B. 104, 1153–1175 (2000)

    Article  Google Scholar 

  48. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-Controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)

    Article  Google Scholar 

  49. Z. Liu, L. Wang, Q. Hao, D. Wang, K. Tang, M. Zuo, Q. Yang, Facile synthesis and characterization of CuInS2 nanocrystals with different structures and shapes. Cryst. Eng. Comm. 15, 7192–7198 (2013)

    Article  Google Scholar 

  50. X. Lu, Z. Zhuang, Q. Peng, Y. Li, Controlled synthesis of wurtzite CuInS2 nanocrystals and their side-by-side nanorod assemblies. Cryst. Eng. Comm. 13, 4039–4045 (2011)

    Article  Google Scholar 

  51. T. Mokari, M. Zhang, P. Yang, Shape, size, and assembly control of Pbte nanocrystals. J. Am. Chem. Soc. 129, 9864–9865 (2007)

    Article  Google Scholar 

  52. A.R. Tao, S. Habas, P. Yang, shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008)

    Article  Google Scholar 

  53. Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 45, 3414–3439 (2006)

    Article  Google Scholar 

  54. W.-J. Wang, Y. Jiangn, X.-Z. Lan, C. Wang, X.-M. Liu, B.-B. Wang, J.-W. Li, B. Yang, X.-N. Ding, Synthesis of CuInSe2 monodisperse nanoparticles and the nanorings shape evolution via a green solution reaction route. Mater. Sci. Semicond. Process. 15, 467–471 (2012)

    Article  Google Scholar 

  55. H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, Y. Li, A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent. Nanotechnology 18(025602), 1–6 (2007)

    Google Scholar 

  56. S.R. Kodigala, V.S. Raja, A.K. Bhatnagar, F. Juang, S.J. Chang, Y.K. Su, Effect of annealing and γ-irradiation on the properties of CuInSe2 thin films. Mater. Lett. 45, 251–261 (2000)

    Article  Google Scholar 

  57. K. Zeaiter, Y. Llinares, C. Llinares, Structural and photoluminescence study of the quaternary alloys system CuIn(SxSe1−x)2. Sol. Energy Mater. Sol. Cells 61, 313–329 (2000)

    Article  Google Scholar 

  58. M.V. Yakushev, A.V. Mudryi, I.V. Victorov, J. Krustok, E. Mellikov, Energy of excitons in CuInS2 single crystals. Appl. Phys. Lett. 88(011922), 1–10 (2006)

    Google Scholar 

  59. J. Hofhuis, J. Schoonman, A. Goossens, Elucidation of the excited-state dynamics in CuInS2 thin films. J. Phys. Chem. C 112, 15052–15059 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was defined and supported by from the Iran university of Science and Technology. This research was supported by Professor Wolfgang Tremel at Johannes Gutenberg-University of Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Vahidshad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidshad, Y., Tahir, M.N., Mirkazemi, S.M. et al. One-pot thermolysis synthesis of CuInS2 nanoparticles with chalcopyrite-wurtzite polytypism structure. J Mater Sci: Mater Electron 26, 8960–8972 (2015). https://doi.org/10.1007/s10854-015-3579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3579-x

Keywords

Navigation