Skip to main content
Log in

Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Crystal phase engineering on CuInS2 (CIS) nanocrystals, especially polytypic structure, has become one of the research hotspots to design the advanced materials and devices for energy conversion and environment treatment. Here, the polytypic CIS nanosheets (NSs) including zincblende/wurtzite and chalcopyrite/wurtzite types were first time achieved in a hot-injection system using oleic acid and liquid paraffin as the reaction media. As-obtained polytypic CIS NSs exhibit significantly enhanced light-absorption ability and visible-light-driven photocatalytic performance originating from the rational hetero-crystalline interfaces and surface defect states, which efficiently inhibit the recombination of photo-generated carriers. Meanwhile, the polytypic CIS NSs were spin-coated onto the surface of fluorinated-tin oxide glass substrate and used as the photoelectrode, which shows an excellent photoelectrochemical (PEC) activity in aqueous solution. The present work not only provides a facile, rapid, low-cost, and environmental-friendly synthesis strategy to design the crystal phase and defect structure of ternary chalcogenides, but also demonstrates the relationships between the polytypic structure and photocatalytic/photoelectrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, S.; Gao, C.; Low, J. X.; Xiong, Y. J. Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Res.2019, 12, 2031–2054.

    CAS  Google Scholar 

  2. Wu, L.; Chen, S. Y.; Fan, F. J.; Zhuang, T. T.; Dai, C. M.; Yu, S. H. Polytypic nanocrystals of Cu-based ternary chalcogenides: Colloidal synthesis and photoelectrochemical properties. J. Am. Chem. Soc.2016, 138, 5576–5584.

    CAS  Google Scholar 

  3. Luo, Z.; Poyraz, A. S.; Kuo, C. H.; Miao, R.; Meng, Y. T.; Chen, S. Y.; Jiang, T.; Wenos, C.; Suib, S. L. Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater.2015, 27, 6–17.

    CAS  Google Scholar 

  4. Fang, Z. B.; Weng, S. X.; Ye, X. X.; Feng, W. H.; Zheng, Z. Y.; Lu, M. L.; Lin, S.; Fu, X. Z.; Liu, P. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution. ACS Appl. Mater. Interfaces2015, 7, 13915–13924.

    CAS  Google Scholar 

  5. Chai, Y.; Lu, J. X.; Li, L.; Li, D. L.; Li, M.; Liang, J. TEOA-induced in situ formation of wurtzite and zinc-blende CdS heterostructures as a highly active and long-lasting photocatalyst for converting CO2 into solar fuel. Catal. Sci. Technol.2018, 8, 2697–2706.

    CAS  Google Scholar 

  6. Vainorius, N.; Lehmann, S.; Jacobsson, D.; Samuelson, L.; Dick, K. A.; Pistol, M. E. Confinement in thickness-controlled GaAs polytype nanodots. Nano Lett.2015, 75, 2652–2656.

    Google Scholar 

  7. Xu, F. Y.; Zhang, J. J.; Zhu, B. C.; Yu, J. G.; Xu, J. S. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl. Catal. B: Environ.2018, 230, 194–202.

    CAS  Google Scholar 

  8. Li, X.; Tu, D. T.; Yu, S. H.; Song, X. R.; Lian, W.; Wei, J. J.; Shang, X. Y.; Li, R. R.; Chen, X. Y. Highly efficient luminescent I-III-VI semiconductor nanoprobes based on template-synthesized CuInS2 nanocrystals. Nano Res.2019, 12, 1804–1809.

    CAS  Google Scholar 

  9. Xie, C. J.; Lu, X. Y.; Deng, R.; Luo, X. B.; Gao, J.; Dionysiou, D. D. Unique surface structure of nano-sized CuInS2 anchored on rGO thin film and its superior photocatalytic activity in real wastewater treatment. Chem. Eng. J.2018, 338, 591–598.

    CAS  Google Scholar 

  10. Leach, A. D. P.; Mast, L. G.; Hernandez-Pagan, E. A.; Macdonald, J. E. Phase dependent visible to near-infrared photoluminescence of CuInS2 nanocrystals. J. Mater. Chem. C2015, 3, 3258–3265.

    CAS  Google Scholar 

  11. Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces2013, 5, 12221–12237.

    CAS  Google Scholar 

  12. Lei, S. J.; Wang, C. Y.; Liu, L.; Guo, D. H.; Wang, C. N.; Tang, Q. L.; Cheng, B. C.; Xiao, Y. H.; Zhou, L. Spinel indium sulfide precursor for the phase-selective synthesis of Cu-In-S nanocrystals with zinc-blende, wurtzite, and spinel structures. Chem. Mater.2013, 25, 2991–2997.

    CAS  Google Scholar 

  13. Gou, X. L.; Cheng, F. Y.; Shi, Y. H.; Zhang, L.; Peng, S. J.; Chen, J.; Chen, P. W. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J.Am. Chem. Soc.2006, 128, 7222–7229.

    CAS  Google Scholar 

  14. Liu, L. W.; Li, H.; Liu, Z. R.; Xie, Y. H. Structure and band gap tunable CuInS2 nanocrystal synthesized by hot-injection method with altering the dose of oleylamine. Mater. Des.2018, 149, 145–152.

    CAS  Google Scholar 

  15. Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc.2008, 130, 5620–5621.

    CAS  Google Scholar 

  16. Koo, B.; Patel, R. N.; Korgel, B. A. Wurtzite-chalcopyrite polytypism in CuInS2 nanodisks. Chem. Mater.2009, 21, 1962–1966.

    CAS  Google Scholar 

  17. Huang, W. C.; Tseng, C. H.; Chang, S. H.; Tuan, H. Y.; Chiang, C. C.; Lyu, L. M.; Huang, M. H. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application. Langmuir2012, 28, 8496–8501.

    CAS  Google Scholar 

  18. Vahidshad, Y.; Tahir, M. N.; Mirkazemi, S. M.; Zad, A. I.; Ghasemzadeh, R.; Tremel, W. One-pot thermolysis synthesis of CuInS2 nanoparticles with chalcopyrite-wurtzite polytypism structure. J. Mater. Sci: Mater. Electron.2015, 26, 8960–8972.

    CAS  Google Scholar 

  19. Kruszynska, M.; Borchert, H.; Parisi, J.; Kolny-Olesiak, J. Synthesis and shape control of CuInS2 nanoparticles. J. Am. Chem. Soc.2010, 132, 15976–15986.

    CAS  Google Scholar 

  20. Yarema, O.; Yarema, M.; Wood, V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I-III-VI materials. Chem. Mater.2018, 30, 1446–1461.

    CAS  Google Scholar 

  21. Park, J. C.; Nam, Y. S. Controlling surface defects of non-stoichiometric copper-indium-sulfide quantum dots. J. Colloid Interface Sci.2015, 460, 173–180.

    CAS  Google Scholar 

  22. Deng, Z. T.; Cao, L.; Tang, F. Q.; Zou, B. S. Anew route to zinc-blende CdSe nanocrystals: Mechanism and synthesis. J. Phys. Chem. B2005, 109, 16671–16675.

    CAS  Google Scholar 

  23. Li, X. J.; Li, Y. N.; Xie, F.; Li, W.; Li, W. J.; Chen, M. F.; Zhao, Y. Preparation of monodispersed CuS nanocrystals in an oleic acid/paraffin system. RSC Adv.2015, 5, 84465–84470.

    CAS  Google Scholar 

  24. Li, H.; Yuan, Z. H.; Li, W.; Chen, M. F.; Snyders, R.; Li, W. J.; Bittencourt, C. Novel synthesis of porous (3-In2S3 ultrathin nanosheets with large lateral size. Mater. Lett.2019, 252, 15–18.

    CAS  Google Scholar 

  25. Wang, G. S.; Wei, H. Y.; Shi, J. J.; Xu, Y. Z.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nana Energy2017, 35, 17–25.

    CAS  Google Scholar 

  26. Tang, A. W.; Hu, Z. L.; Yin, Z.; Ye, H. H.; Yang, C. H.; Teng, F. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase. Dalton Trans.2015, 44, 9251–9259.

    CAS  Google Scholar 

  27. Yu, C.; Zhang, L. L.; Tian, L.; Liu, D.; Chen, F. L.; Wang, C. Synthesis and formation mechanism of CuInS2 nanocrystals with a tunable phase. CrystEngComm2014, 16, 9596–9602.

    CAS  Google Scholar 

  28. Zeng, T.; Ni, H. J.; Chen, Y. X.; Su, X. L.; Shi, W. Facile synthesis of CuInS2 nanocrystals “photovoltaic ink” via hot-injection strategy under ambient environment. Mater. Lett.2016, 172, 94–97.

    CAS  Google Scholar 

  29. Yoshino, K.; Nomoto, K.; Kinoshita, A.; Ikari, T.; Akaki, Y.; Yoshitake, T. Dependence of Cu/In ratio of structural and electrical characterization of CuInS2 crystal. J. Mater. Sci: Mater. Electron.2008, 19, 301–304

    CAS  Google Scholar 

  30. Li, T. T.; Li, X. Y.; Zhao, Q. D.; Shi, Y.; Teng, W. Fabrication of n-type CuInS2 modified TiO2 nanotube arrays heterostructure photoelectrode with enhanced photoelectrocatalytic properties. Appl. Catal. B: Environ.2014, 156–157, 362–370.

    Google Scholar 

  31. Cai, W.; Xiang, W. D.; Wang, J. J.; Wang, X. M.; Zhong, J. S.; Liu, L. J. Biomolecule-assisted synthesis of copper indium sulfide microspheres with nanosheets. Mater. Lett.2009, 63, 2495–2498.

    CAS  Google Scholar 

  32. Chen, J.; Liu, W. X.; Gao, W. W. Tuning photocatalytic activity of In2S3 broadband spectrum photocatalyst based on morphology. Appl. Surf. Sci.2016, 368, 288–297.

    CAS  Google Scholar 

  33. Yuan, Y. J.; Chen, D. Q.; Huang, Y. W.; Yu, Z. T.; Zhong, J. S.; Chen, T. T.; Tu, W. G.; Guan, Z. J.; Cao, D. P.; Zou, Z. G MoS2 nanosheet-modified CuInS2 photocatalyst for visible-light-driven hydrogen production from water. Chemsuschem2016, 9, 1003–1009.

    CAS  Google Scholar 

  34. Gigot, A.; Fontana, M.; Serrapede, M.; Castellino, M.; Bianco, S.; Armandi, M.; Bonelli, B.; Pirri, C. F.; Tresso, E.; Rivolo, P. Mixed 1T-2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance. ACS Appl. Mater. Interfaces2016, 8, 32842–32852.

    CAS  Google Scholar 

  35. Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater.2008, 20, 6434–6443.

    CAS  Google Scholar 

  36. Pramanik, S.; Bhandari, S.; Chattopadhyay, A. Zinc quinolate complex decorated CuInS2/ZnS core/shell quantum dots for white light emission. J. Mater. Chem. C2017, 5, 7291–7296.

    CAS  Google Scholar 

  37. Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.; Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino, T. et al. From binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. ACS Nana2015, 9, 521–531.

    CAS  Google Scholar 

  38. Xiong, Y. S.; Deng, K.; Jia, Y. Y.; He, L. C.; Chang, L.; Zhi, L. J.; Tang, Z. Y. Crucial role of anions on arrangement of Cu2S nanocrystal superstructures. Small2014, 10, 1523–1528.

    CAS  Google Scholar 

  39. Tian, Y.; Wang, L. G.; Tang, H. Q.; Zhou, W. W. Ultrathin two-dimensional p-In2S3 nanocrystals: Oriented-attachment growth controlled by metal ions and photoelectrochemical properties. J. Mater. Chem. A2015, 3, 11294–11301.

    CAS  Google Scholar 

  40. de Mello Donegá C.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small2005, 1, 1152–1162.

    Google Scholar 

  41. Yang, P.; Shi, L. J.; Zhang, J. M.; Liu, G. B.; Yang, S. A.; Guo, W.; Yao, Y. G. Tuning to the band gap by complex defects engineering: Insights from hybrid functional calculations in CuInS2. J. Phys. D: Appl. Phys.2018, 57, 025105.

    Google Scholar 

  42. Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. E.; Scholes, G. D. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nana2010, 4, 5253–5262.

    CAS  Google Scholar 

  43. Cai, C. Q.; Zhai, L. L.; Wu, Q. Q.; Ma, Y. H.; Zhang, L. J.; Yang, Y.; Zou, C.; Huang, S. M. Tailoring defects of CuInS2 quantum dots for sensitized solar cells. J. Alloys Compel.2017, 779, 227–235.

    Google Scholar 

  44. Zhang, S. B.; Wei, S. H.; Zunger, A.; Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B1998, 57, 9642–9656.

    CAS  Google Scholar 

  45. Zhao, L.; Hong, C. C.; Lin, L. X.; Wu, H. P.; Su, Y. W.; Zhang, X. B.; Liu, A. P. Controllable nanoscale engineering of vertically aligned MoS2 ultrathin nanosheets by nitrogen doping of 3D graphene hydrogel for improved electrocatalytic hydrogen evolution. Carbon2017, 776, 223–231.

    Google Scholar 

  46. Wang, Y.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nana Res.2017, 10, 2699–2711.

    CAS  Google Scholar 

  47. Tian, L.; Li, J. Y.; Liang, E.; Wang, J. K.; Li, S. S.; Zhang, H. J.; Zhang, S. W. Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Appl. Catal. B: Environ.2018, 225, 307–313.

    CAS  Google Scholar 

  48. Xiao, X.; Zhang, W. D.; Yu, J. Y.; Sun, Y. J.; Zhang, Y. X.; Dong, F. Mechanistic understanding of ternary Ag/AgCl@La(OH)3 nanorods as novel visible light plasmonic photocatalysts. Catal. Sci. Technol.2016, 6, 5003–5010.

    CAS  Google Scholar 

  49. Wang, X. W.; Li, Y. N.; Wang, M. R.; Li, W. J.; Chen, M. E.; Zhao, Y. Synthesis of tunable ZnS-CuS microspheres and visible-light photoactivity for rhodamine B. New J. Chem.2014, 38, 4182–4189.

    CAS  Google Scholar 

  50. Lai, C.; Zhang, M. M.; Li, B. S.; Huang, D. L.; Zeng, G. M.; Qin, L.; Liu, X. G.; Yi, H.; Cheng, M.; Li, L. et al. Fabrication of CuS/BiVO4 (040) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem. Eng. J.2019, 358, 891–902.

    CAS  Google Scholar 

  51. Zhao, Y. Y.; Kuai, L.; Geng, B. Y. Low-cost and highly efficient composite visible light-driven Ag-AgBr/y-Al2O3 plasmonic photocatalyst for degrading organic pollutants. Catal. Sci. Technol.2012, 2, 1269–1274.

    CAS  Google Scholar 

  52. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev.2015, 44, 2893–2939.

    CAS  Google Scholar 

  53. Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nana Energy2018, 53, 296–336.

    CAS  Google Scholar 

  54. Zhang, X. J.; Guo, Y. C.; Tian, J.; Sun, B. T.; Liang, Z. Q.; Xu, X. S.; Cui, H. Z. Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity. Appl. Catal. B: Environ.2018, 232, 355–364.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Joint Foundation of National Natural Science Foundation of China (No. U1764254), 321 Talent Project of Nanjing, China (No. 631783) and 111 Project, China (No. D17003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjiang Li or Zhihao Yuan.

Electronic Supplementary Material

12274_2020_2665_MOESM1_ESM.pdf

Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, W., Li, W. et al. Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Res. 13, 583–590 (2020). https://doi.org/10.1007/s12274-020-2665-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2665-4

Keywords

Navigation