Skip to main content
Log in

Mechanochemical synthesis of ternary chalcogenide chalcostibite CuSbS2 and its characterization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the very rapid one-step mechanochemical synthesis of nanocrystalline ternary chalcogenide chalcostibite CuSbS2 prepared from copper, antimony, and sulfur precursors by high-energy milling for only 30 min in a planetary mill is reported. XRD confirmed the orthorhombic crystal structure of CuSbS2. The crystallite size of CuSbS2 calculated by LeBail refinement of the X-ray powder diffraction data was 25 nm. The nanocrystalline chalcostibite CuSbS2 was also confirmed by transmission electron microscopy. The purity of CuSbS2 was verified by Raman spectroscopy. The synthesized chalcostibite exhibits the specific surface area value of 2.4 m2g−1. UV–Vis spectroscopy showed the optical bandgap of CuSbS2 as 1.54 eV with wide range of absorption in visible region. Photoresponse of CuSbS2 was confirmed by I–V measurements under dark and light illumination. The proposed mechanochemical synthesis provides an alternative approach to prepare also other ternary semiconductor nanomaterials. CuSbS2 semiconductor nanocrystals have the potential to be used as light absorbers in photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.B. Kehoe, D.J. Temple, G.W. Watson, D.O. Scanlon, Cu(3)MCh(3) (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory. PCCP. 15, 15477–15484 (2013)

    Article  CAS  Google Scholar 

  2. Y.C. Choi, E.J. Yeom, T.K. Ahn, S.I. Seok, CuSbS2-sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution. Angewandte Chemie-International Edition. 54, 4005–4009 (2015)

    Article  CAS  Google Scholar 

  3. L.L. Kang, L.B. Zhao, L.X. Jiang, C. Yan, K.W. Sun, B.K. Ng et al., In situ growth of CuSbS2 thin films by reactive co-sputtering for solar cells. Mater Sci Semicond Process. 84, 101–106 (2018)

    Article  CAS  Google Scholar 

  4. Z.F. Liu, J.J. Huang, J.H. Han, T.T. Hong, J. Zhang, Z.H. Liu, CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells. PCCP. 18, 16615–16620 (2016)

    Article  CAS  Google Scholar 

  5. A.C. Rastogi, N.R. Janardhana, Properties of CuSbS2 thin films electrodeposited from ionic liquids as p-type absorber for photovoltaic solar cells. Thin Solid Films 565, 285–292 (2014)

    Article  CAS  Google Scholar 

  6. A.W. Welch, L.L. Baranowski, P. Zawadzki, C. DeHart, S. Johnston, S. Lany et al., Accelerated development of CuSbS2 thin film photovoltaic device prototypes. Prog Photovolt. 24, 929–939 (2016)

    Article  CAS  Google Scholar 

  7. S. Moosakhani, A.A.S. Alvani, R. Mohammadpour, Y.L. Ge, S.P. Hannula, Solution synthesis of CuSbS2 nanocrystals: a new approach to control shape and size. J Alloys Compd. 736, 190–201 (2018)

    Article  CAS  Google Scholar 

  8. T. Rath, A.J. MacLachlan, M.D. Brown, S.A. Hague, Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates. J Mater Chem A. 3, 24155–24162 (2015)

    Article  CAS  Google Scholar 

  9. T.J. Whittles, T.D. Veal, C.N. Savory, A.W. Welch, F.W.D. Lucas, J.T. Gibbon et al., Core levels, band alignments, and valence-band states in CuSbS2 for solar cell applications. ACS Appl. Mater. Interf. 9, 41916–41926 (2017)

    Article  CAS  Google Scholar 

  10. E. Bastola, K.P. Bhandari, I. Subedi, N.J. Podraza, R.J. Ellingson, Structural, optical, and hole transport properties of earth-abundant chalcopyrite (CuFeS2) nanocrystals. MRS Commun. 8, 970–978 (2018)

    Article  CAS  Google Scholar 

  11. E. Dutkova, Z. Bujnakova, J. Kovac, I. Skorvanek, M.J. Sayagues, A. Zorkovska et al., Mechanochemical synthesis, structural, magnetic, optical and electrooptical properties of CuFeS2 nanoparticles. Adv Powder Technol. 29, 1820–1826 (2018)

    Article  CAS  Google Scholar 

  12. P. Balaz, M. Hegedus, M. Balaz, N. Daneu, P. Siffalovic, Z. Bujnakova et al., Photovoltaic materials: Cu2ZnSnS4 (CZTS) nanocrystals synthesized via industrially scalable, green, one-step mechanochemical process. Prog Photovolt. 27, 798–811 (2019)

    Article  CAS  Google Scholar 

  13. P. Balaz, M. Hegedus, M. Achimovicova, M. Balaz, M. Tesinsky, E. Dutkova et al., Semi-industrial green mechanochemical syntheses of solar cell absorbers based on quaternary sulfides. ACS Sust Chem Eng. 6, 2132–2141 (2018)

    Article  CAS  Google Scholar 

  14. W. Septina, S. Ikeda, Y. Iga, T. Harada, M. Matsumura, Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films 550, 700–704 (2014)

    Article  CAS  Google Scholar 

  15. S. Banu, S.J. Ahn, S.K. Ahn, K. Yoon, A. Cho, Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol Energy Mater Sol Cells. 151, 14–23 (2016)

    Article  CAS  Google Scholar 

  16. M.E. Edley, B. Opasanont, J.T. Conley, H. Tran, S.Y. Smolin, S.M. Li et al., Solution processed CuSbS2 films for solar cell applications. Thin Solid Films 646, 180–189 (2018)

    Article  CAS  Google Scholar 

  17. A. Hussain, R. Ahmed, N. Ali, F.K. Butt, A. Shaari, W.N.W. Shamsuri et al., Post annealing effects on structural, optical and electrical properties of CuSbS2 thin films fabricated by combinatorial thermal evaporation technique. Superlattices Microstruct. 89, 136–144 (2016)

    Article  CAS  Google Scholar 

  18. U. Chalapathi, B. Poornaprakash, C.H. Ahn, S.H. Park, Two-stage processed CuSbS2 thin films for photovoltaics: effect of Cu/Sb ratio. Ceram Int. 44, 14844–14849 (2018)

    Article  CAS  Google Scholar 

  19. C. Macias, S. Lugo, A. Benitez, I. Lopez, B. Kharissov, A. Vazquez et al., Thin film solar cell based on CuSbS2 absorber prepared by chemical bath deposition (CBD). Mater Res Bull. 87, 161–166 (2017)

    Article  CAS  Google Scholar 

  20. W. Wang, L.Y. Hao, W. Zhang, Q. Lin, X.J. Zhang, Z.X. Tang, Preparation of CuSbS2 thin films by a facile and low-cost chemical solution method. J Mater Sci Mater Electron. 29, 4075–4079 (2018)

    Article  CAS  Google Scholar 

  21. K. Takei, T. Maeda, T. Wada, Crystallographic and optical properties of CuSbS2 and CuSb(S1-xSex)(2) solid solution. Thin Solid Films 582, 263–268 (2015)

    Article  CAS  Google Scholar 

  22. H.H. Zhang, Q.S. Xu, G.L. Tan, Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process. Electron. Mater. Lett. 12, 568–573 (2016)

    Article  CAS  Google Scholar 

  23. T. Wada, T. Maeda, Optical properties and electronic structures of CuSbS2, CuSbSe2, and CuSb(S1-xSex)(2) solid solution. Phys. Status Solidi C 14(6), 14 (2017)

    Google Scholar 

  24. C. Marino, T. Block, R. Pottgen, C. Villevieille, CuSbS2 as a negative electrode material for sodium ion batteries. J Power Sources. 342, 616–622 (2017)

    Article  CAS  Google Scholar 

  25. D. Hobbis, K. Wei, H. Wang, J. Martin, G.S. Nolas, Synthesis, structure, Te alloying, and physical properties of CuSbS2. Inorg Chem. 56, 14040–14044 (2017)

    Article  CAS  Google Scholar 

  26. B.-I. Park, S.Y. Lee, D.-K. Lee, Synthesis of CuSbS2 and CuSbSe2 nanocrystals by a mechanochemical method. Curr Photovolt Res. 5, 140–144 (2017)

    Google Scholar 

  27. C.M. Tang, D.D. Liang, H.Z. Li, K. Luo, B.P. Zhang, Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites. J Adv Ceram. 8, 209–217 (2019)

    Article  CAS  Google Scholar 

  28. J. van Embden, J.O. Mendes, J.J. Jasieniak, A.S.R. Chesman, G.E. Della, Solution-processed CuSbS2 thin films and superstrate solar cells with CdS/In2S3 buffer layers. ACS Appl Energy Mater. 3, 7885–7895 (2020)

    Article  CAS  Google Scholar 

  29. W. Jones, M.D. Eddleston, Introductory Lecture: mechanochemistry, a versatile synthesis strategy for new materials. Faraday Discuss. 170, 9–34 (2014)

    Article  CAS  Google Scholar 

  30. S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic et al., Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev. 41, 413–447 (2012)

    Article  CAS  Google Scholar 

  31. V. Sepelak, A. Duvel, M. Wilkening, K.D. Becker, P. Heitjans, Mechanochemical reactions and syntheses of oxides. Chem Soc Rev. 42, 7507–7520 (2013)

    Article  CAS  Google Scholar 

  32. P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J.M. Criado et al., Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev. 42, 7571–7637 (2013)

    Article  CAS  Google Scholar 

  33. P. Balaz, M. Balaz, M. Achimovicova, Z. Bujinakova, E. Dutkova, Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review). J. Mater. Sci. 52, 11851–11890 (2017)

    Article  CAS  Google Scholar 

  34. J. Rodriguez-Carvajal, Recent developments of the program FullProf. Commission on powder diffraction (IUCr). Newsletter 6, 12–19 (2001)

    Google Scholar 

  35. J. Rodriguez-Carvajal, T. Roisnel, Line broadening analysis using FullProf*: determination of microstructural properties. Eur Powder Diff Epdic 8(443–4), 123–126 (2004)

    Google Scholar 

  36. M. Pal, Y.T. Luna, R.S. Gonzalez, N.R. Mathews, F. Paraguay-Delgado, U. Pal, Phase controlled synthesis of CuSbS2 nanostructures: effect of reaction conditions on phase purity and morphology. Mater. Des. 136, 165–173 (2017)

    Article  CAS  Google Scholar 

  37. A.D. Sivagami, K. Biswas, A. Sarma, Orthorhombic CuSbS2 nanobricks: synthesis and its photo responsive behaviour. Mater Sci Semicond Proc. 87, 69–76 (2018)

    Article  CAS  Google Scholar 

  38. O.Y. Ramirez-Esquivel, D.A. Mazon-Montijo, Z. Montiel-Gonzalez, F.S. Aguirre-Tostado, The role of the annealing temperature on the microstructural evolution of CuSbS2 thin films prepared by cationic exchange. Sol Energy Mater Sol Cells. 185, 392–398 (2018)

    Article  CAS  Google Scholar 

  39. B.L. Du, R.Z. Zhang, K. Chen, A. Mahajan, M.J. Reece, The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2. J Mater Chem A. 5, 3249–3259 (2017)

    Article  CAS  Google Scholar 

  40. M. Baláž, N. Daneu, M. Rajňák, J. Kurimský, M. Hegedűs, E. Dutková et al., Rapid mechanochemical synthesis of nanostructured mohite Cu2SnS3 (CTS). J Mater Sci. 53, 13631–13642 (2018)

    Article  CAS  Google Scholar 

  41. P. Baláž, A. Zorkovská, M. Baláž, J. Kováč, M. Tešinský, T. Osserov et al., Mechanochemical reduction of chalcopyrite CuFeS2: changes in composition and magnetic properties. Acta Phys Pol, A. 131, 1165–1167 (2017)

    Article  Google Scholar 

  42. C. Behera, R. Samal, C.S. Rout, R.S. Dhaka, G. Sahoo, S.L. Samal, Synthesis of CuSbS2 nanoplates and CuSbS2-Cu3SbS4 nanocomposite: effect of sulfur source on different phase formation. Inorg Chem. 58, 15291–15302 (2019)

    Article  CAS  Google Scholar 

  43. S.S. Dukhin, B.V. Derjaguin, Non-equilibrium double layer and electrokinetic phenomena, in Surface and colloid science, vol. 7, ed. by E. Matijevic (Wiley, New York, 1974), pp. 297–300

    Google Scholar 

  44. B. Konkena, S. Vasudevan, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pK(a) measurements. J. Phys. Chem. Lett. 3, 867–872 (2012)

    Article  CAS  Google Scholar 

  45. D. Fornasiero, V. Eijt, J. Ralston, An electrokinetic study of pyrite oxidation. Colloids Surf. 62, 63–73 (1992)

    Article  CAS  Google Scholar 

  46. D. Fornasiero, F.S. Li, J. Ralston, Oxidation of Galena 2. Electrokinetic study. J Colloid Interface Sci. 164, 345–354 (1994)

    Article  CAS  Google Scholar 

  47. G. Fairthorne, D. Fornasiero, J. Ralston, Interaction of thionocarbamate and thiourea collectors with sulphide minerals: a flotation and adsorption study. Int J Miner Process. 50, 227–242 (1997)

    Article  CAS  Google Scholar 

  48. T.W. Healy, M.J. Moignard, A review of electrokinetic studies of metal sulfides, in Flotation, A.M. Gaudin Memorial, vol. 1, ed. by M.C. Fuerstenau (New York, AIME, 1976), pp. 275–297

    Google Scholar 

  49. D. Fullston, D. Fornasiero, J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals. Colloid Surf A-Physicochem Eng Aspect. 146, 113–121 (1999)

    Article  CAS  Google Scholar 

  50. J.C. Liu, C.P. Huang, Electrokinetic characteristics of some metal sulfide water interfaces. Langmuir 8, 1851–1856 (1992)

    Article  CAS  Google Scholar 

  51. T.P. Mokone, R.P. van Hille, A.E. Lewis, Effect of solution chemistry on particle characteristics during metal sulfide precipitation. J Colloid Interface Sci. 351, 10–18 (2010)

    Article  CAS  Google Scholar 

  52. M. Balaz, E. Dutkova, Z. Bujnakova, E. Tothova, N.G. Kostova, Y. Karakirova et al., Mechanochemistry of copper sulfides: characterization, surface oxidation and photocatalytic activity. J Alloys Compd. 746, 576–582 (2018)

    Article  CAS  Google Scholar 

  53. E. Dutková, N. Daneu, Z. Lukáčová Bujňáková, M. Baláž, J. Kováč, J. Kováč Jr., P. Baláž, Mechanochemical Synthesis and Characterization of CuInS2/ZnS Nanocrystals. Molecules 24, 1031 (2019)

    Article  CAS  Google Scholar 

  54. R.E. Ornelas-Acosta, S. Shaji, D. Avellaneda, G.A. Castillo, T.K. Das Roy, B. Krishnan, Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater Res Bull. 61, 215–225 (2015)

    Article  CAS  Google Scholar 

  55. S. Ikeda, S. Sogawa, Y. Tokai, W. Septina, T. Harada, M. Matsumura, Selective production of CuSbS2, Cu3SbS3, and Cu3SbS4 nanoparticles using a hot injection protocol. RSC Adv. 4, 40969–40972 (2014)

    Article  CAS  Google Scholar 

  56. B. John, G.G. Silvena, S. Hussain, M.C.S. Kumar, A.L. Rajesh, Surfactant-mediated solvothermal synthesis of CuSbS2 nanoparticles as p-type absorber material. Indian J. Phys. 93, 185–195 (2019)

    Article  CAS  Google Scholar 

  57. L. Shi, C.Y. Wu, J.J. Li, J. Ding, Selective synthesis and photoelectric properties of Cu3SbS4 and CuSbS2 nanocrystals. J Alloys Compd. 694, 132–135 (2017)

    Article  CAS  Google Scholar 

  58. A.D. Sivagami, K. Biswas, S. Arun, Orthorhombic CuSbS2 nanobricks: synthesis and its photo responsive behaviour. Mater Sci Semicond Process. 87, 69–76 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-18-0357 and by the Slovak Grant Agency VEGA (project 2/0044/18 and 1/0733/20). M.F. acknowledges the support by the APVV (Project No. 19-0526). The support of COST Action CA18112 MechSustInd (www.mechsustind.eu) supported by the COST Association (European Cooperation in Science and Technology, www.cost.eu) is also acknowledged. We would like to thank to Dr. Lukáčová Bujňáková for ZP discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Dutková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutková, E., Sayagués, M.J., Fabián, M. et al. Mechanochemical synthesis of ternary chalcogenide chalcostibite CuSbS2 and its characterization. J Mater Sci: Mater Electron 32, 22898–22909 (2021). https://doi.org/10.1007/s10854-021-06767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06767-9

Navigation