Skip to main content
Log in

Modification of the structure of EPDM by chemically grafting inorganic species

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of ethylene propylene diene monomer (EPDM) nanocomposites have been prepared. First of all, EPDM is modified by grafting maleic anhydride to EPDM backbone. Subsequently, ethanolamine, 3-aminopropyltriethoxysilane and glycerine are added to react with the pendent anhydride to form grafted polyimides or polyols, respectively. The primary inorganic precursor, tetraethylsiloxane, is incorporated into these variously modified EPDM under acid condition to form the EPDM composites. The thermal properties of thermogravimetric analysis shows that the 20 % weight loss temperatures and char yields of various EPDM composites are higher than that of pristine EPDM. From the dynamic mechanic analysis studies, it exhibits both E′ and E″ of the composites are much higher than that of EPDM matrix. As confirmed by scanning electron microscopy, phase distributions of nano-inorganic component/SiO2 evenly disperse in these EPDM composites are correlated to exhibit higher rigidity and toughness than that of neat EPDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu Bakar A (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27:841–850

    Article  Google Scholar 

  2. Das A, De D, Naskar N, Debnath SC (2006) Effect of vulcanization technique on the physical properties of silica-filled EPDM rubber. J Appl Polym Sci 99:1132–1139

    Article  Google Scholar 

  3. Davis SC, Fulton JB, Hoang PPM (1990) Chlorinated EPDM with superior stability. US Patent, US4959420 A

  4. Makowski HS, Cain WP, Wei PE (1964) Readily curable chlorinated poly-α-olefins and ethylene-α-olefin copolymers indus. Eng Chem Prod Res Dev 3:282–291

    Article  Google Scholar 

  5. Fu J, Wang L, Zhang A (2008) Toughening effect of EPDM-graft-methyl methacrylate and styrene (EPDM-g-MMA-St) on methyl methacrylate–styrene copolymer (MS resin). J Appl Polym Sci 108:3507–3515

    Article  Google Scholar 

  6. Saikrasun S, Amornsakchai T (2012) Reinforcing performance of recycled PET microfibrils in comparison with liquid crystalline polymer for polypropylene based composite fibers. J Polym Res 19:9750–9843

    Article  Google Scholar 

  7. Zhang J, Ding QJ, Hu BX, Liu BL, Shen J (2006) Novel preparation and properties of EPDM/montmorillonite nanocomposites. J Appl Polym Sci 101:1810–1815

    Article  Google Scholar 

  8. Haitao S, Juqing C, Qiang Z, Wei Z, Qihui H, Baixing H, Jian S (2007) Preparation and properties of EPDM/TiO2 composites. J Appl Polym Sci 106:314–319

    Article  Google Scholar 

  9. Kang D, Kim D, Yoon SH, Kim D, Barry C, Mead J (2007) Properties and dispersion of EPDM/modified-organoclay nanocomposites. Macromol Mater Eng 292:329–338

    Article  Google Scholar 

  10. Yang H, Li B, Wang K, En Sun T, Wang X, Zhang Q, Fu Q, Dong X, Han CC (2008) Rheology and phase structure of PP/EPDM/SiO2 ternary composites. Eur Polym J 44:113–123

    Article  Google Scholar 

  11. Ismail H, Mathialagan M (2012) Comparative study on the effect of partial replacement of silica or calcium carbonate by bentonite on the properties of EPDM composites. Polym Test 31:199–208

    Article  Google Scholar 

  12. Mathialagan M, Ismail H (2012) Optimization and effect of 3-aminopropyltriethoxysilane content on the properties of bentonite-filled ethylene propylene diene monomer composites. Polym Compos 33:1993–2000

    Article  Google Scholar 

  13. Zhang XF, Zhang Y, Peng ZL (2000) Dynamically vulcanized nitrile rubber/polyoxymethylene thermoplastic elastomers. J Appl Polym Sci 77:2641–2645

    Article  Google Scholar 

  14. Pervorini TJ, Hertzberg RW, Manson JA (1990) Structure–property relations in an injection-moulded, rubber-toughened, semicrystalline polyoxymethylene. J Mater Sci 25:3385–3395

    Article  Google Scholar 

  15. Prephet K, Horanont P (2000) Phase structure of ternary polypropylene/elastomer/filler composites: effect of elastomer polarity. Polymer 41:9283–9290

    Article  Google Scholar 

  16. Nakanishi K, Solomon PH (1977) Infrared absorption spectroscopy. Holden-Day Inc., San Francisco

    Google Scholar 

  17. Chiang CL, Ma CCM (2004) Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym Degrad Stab 83:207–214

    Article  Google Scholar 

  18. Fidalgo A, Nunes TG, Ilharco LM (2000) The structure of hybrid gels by drift and NMR spectroscopies. J Sol–Gel Sci Technol 19:403–407

    Article  Google Scholar 

  19. Joseph R, Zhang S, Ford W (1996) Structure and dynamics of a colloidal silica-poly (methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy. Macromolecules 29:1305–1312

    Article  Google Scholar 

  20. Brinker CJ, Scherer GW (1990) The physics and chemistry of sol–gel processing. Sol–gel science. Academic Press, San Diego

    Google Scholar 

  21. Shih YF, Jeng RJ (2002) Carbon black containing IPNs based on unsaturated polyester/epoxy. I. Dynamic mechanical properties, thermal analysis, and morphology. J Appl Polym Sci 86:1904–1910

    Article  Google Scholar 

  22. Wu CS, Liu YL, Hsu KL (2003) Maleimide–epoxy resins: preparation, thermal properties, and flame retardance. Polymer 44:565–573

    Article  Google Scholar 

  23. Shih YF, Wang YT, Jeng RJ, Weic KM (2004) Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy. Polym Degrad Stab 86:339–348

    Article  Google Scholar 

  24. Pearce EM, Leipins R (1975) Public health implications of components of plastics manufacture. Flame retardants. Environ Health Perspect 11:59–69

    Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Council of Taiwan for its financial support (NSC 99-2113-M-324-003-).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeng-Fong Shih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nien, YH., Yeh, PH., Shih, YF. et al. Modification of the structure of EPDM by chemically grafting inorganic species. J Sol-Gel Sci Technol 73, 350–357 (2015). https://doi.org/10.1007/s10971-014-3539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3539-6

Keywords

Navigation