Skip to main content
Log in

Non-hydrolytic sol–gel synthesis of tantalum sulfides

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Non-hydrolytic sol–gel synthesis provides a low temperature solution based approach to solid-state materials. In this work, reactions of TaX5 (X = F, Cl, Br, I) with the thio-ethers di-tert-butylsulfide and hexamethyldisilathiane were carried out in chloroform or acetonitrile. The influence of synthetic parameters such as temperature, reaction time, starting sulfur to tantalum ratio, and solvent volume were explored, and optimized conditions for the preparation of phase pure crystalline TaS2 were established. Amorphous powders were recovered for most of the samples, but crystalline 1T- and 3R-TaS2 modifications could be selectively prepared by heat treatments of the as-recovered precursors at 700 and 800 °C, respectively. The crystallite sizes could be adjusted by tuning the starting sulfur to tantalum ratios, and by choice of solvent. For specific conditions, nanocrystalline 1T-TaS2 was directly recovered from solution. To our knowledge, this is the first time that crystalline TaS2 was directly obtained from low temperature solution based routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilson JA, Di Salvo FJ, Mahajan S (1974) Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys Rev Lett 32(16):882–885

    Article  Google Scholar 

  2. Butz T, Lerf A, Besenhard JO (1984) Metastable configurations during lithium intercalation into 2 h-Tas2. Rev Chim Miner 21(4):556–587

    Google Scholar 

  3. Butz T, Saitovitch H, Lerf A (1979) Kinetics of lithium intercalation into 2H-Tas2 studied by tantalum hyperfine spectroscopy. Chem Phys Lett 65(1):146–149

    Article  Google Scholar 

  4. Gamble FR, Osiecki JH, Cais M, Pisharody R, DiSalvo FJ, Geballe TH (1971) Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174(4008):493–497. doi:10.1126/science.174.4008.493

    Article  Google Scholar 

  5. Voorhoeve JM, van den Berg N, Robbins M (1970) Intercalation of the niobium–diselenide layer structure by first-row transition metals. J Solid State Chem 1(2):134–137. doi:10.1016/0022-4596(70)90003-4

    Article  Google Scholar 

  6. Gamble FR, Osiecki JH, DiSalvo FJ (1971) Some superconducting intercalation complexes of TaS2 and substituted pyridines. J Chem Phys 55(7):3525–3530

    Article  Google Scholar 

  7. Wu X-C, Tao Y-R, Gao Q-X (2009) Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chem Commun 40:6008–6010

    Article  Google Scholar 

  8. Wu XC, Tao YR, Hu YM, Song Y, Hu Z, Zhu JJ, Dong L (2006) Tantalum disulfide nanobelts: preparation, superconductivity and field emission. Nanotechnology 17(1):201–205. doi:10.1088/0957-4484/17/1/033

    Article  Google Scholar 

  9. Rao CNR, Pisharody KPR (1976) Transition metal sulfides. Prog Solid State Chem 104(Pt 4):207–270. doi:10.1016/0079-6786(76)90009-1

    Article  Google Scholar 

  10. Jellinek F (1962) The system tantalum–sulfur. J Less Common Met 4(1):9–15. doi:10.1016/0022-5088(62)90053-x

    Article  Google Scholar 

  11. Bjerkelund E, Fermor JH, Kjekshus A (1966) On the properties of TaS3 and TaSe3. Acta Chem Scand 20:1836–1842

    Article  Google Scholar 

  12. Franzen HF, Smeggil JG (1969) Two new subsulfides of tantalum. J Am Chem Soc 91(10):2814–2815. doi:10.1021/ja01038a086

    Article  Google Scholar 

  13. Kim SJ, Nanjundaswamy KS, Hughbanks T (1991) Single-crystal structure of tantalum sulfide (Ta3S2). Structure and bonding in the Ta6Sn (n = 1,3,4,5?) pentagonal–antiprismatic chain compounds. Inorg Chem 30(2):159–164. doi:10.1021/ic00002a004

    Article  Google Scholar 

  14. Tenne R, Seifert G (2009) Recent progress in the study of inorganic nanotubes and fullerene-like structures. Ann Rev Mater Res 39(1):387–413. doi:10.1146/annurev-matsci-082908-145429

    Article  Google Scholar 

  15. Rao CNR, Govindaraj A (2009) Synthesis of inorganic nanotubes. Adv Mater 21(42):4208–4233. doi:10.1002/adma.200803720

    Article  Google Scholar 

  16. Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen SR, Tenne R (1997) Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387(6635):791–793. http://www.nature.com/nature/journal/v387/n6635/suppinfo/387791a0_S1.html

    Google Scholar 

  17. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nano 8(7):497–501. doi:10.1038/nnano.2013.100

    Article  Google Scholar 

  18. Butler SZ, Hollen SM, Cao LY, Cui Y, Gupta JA, Gutierrez HR, Heinz TF, Hong SS, Huang JX, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926

    Article  Google Scholar 

  19. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453

    Article  Google Scholar 

  20. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150

    Article  Google Scholar 

  21. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571

    Article  Google Scholar 

  22. Dunnill CW, Edwards HK, Brown PD, Gregory DH (2006) Single-step synthesis and surface-assisted growth of superconducting TaS2 nanowires. Angew Chem Int Ed 45(42):7060–7063. doi:10.1002/anie.200602614

    Article  Google Scholar 

  23. Dunnill CW, MacLaren I, Gregory DH (2010) Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry. Nanoscale 2(1):90–97

    Article  Google Scholar 

  24. Li P, Stender CL, Ringe E, Marks LD, Odom TW (2010) Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small 6(10):1096–1099. doi:10.1002/smll.201000226

    Article  Google Scholar 

  25. Chick KY, Nath M, Parkinson BA (2006) TaS2 nanoplatelets produced by laser ablation. J Mater Res 21(5):1243–1247. doi:10.1557/jmr 2006.0148

    Article  Google Scholar 

  26. Enomoto H, Lerner MM (2002) Synthesis of polymer/1T-TaS2 layered nanocomposites. Mater Res Bull 37(8):1499–1507

    Article  Google Scholar 

  27. Wang L, Kanatzidis MG (2001) Laminated TaS2/polymer nanocomposites through encapsulative precipitation of exfoliated layers. Chem Mater 13(10):3717–3727

    Article  Google Scholar 

  28. Manriquez V, Ruizleon D, Lara N, Gonzalez G (1995) Layered transition-metal dichalcogenides MX2 (M = Nb, Ta X = S, Se, Te)—structure of new phases of tantalum derivatives and intercalation of conducting polymers. Bol Soc Chil Quim 40(2):213–217

    Google Scholar 

  29. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1420–1421

    Article  Google Scholar 

  30. Schuffenhauer C, Parkinson BA, Jin-Phillipp NY, Joly-Pottuz L, Martin JM, Popovitz-Biro R, Tenne R (2005) Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small 1(11):1100–1109. doi:10.1002/smll.200500133

    Article  Google Scholar 

  31. Andrianainarivelo M, Corriu R, Leclercq D, Mutin PH, Vioux A (1996) Mixed oxides SiO2–ZrO2 and SiO2–TiO2 by a non-hydrolytic sol–gel route. J Mater Chem 6(10):1665–1671. doi:10.1039/jm9960601665

    Article  Google Scholar 

  32. Vioux A (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mater 9(11):2292–2299. doi:10.1021/cm970322a

    Article  Google Scholar 

  33. Schleich DM, Martin MJ (1986) Synthesis of novel molybdenum chalcogenides. J Solid State Chem 64(3):359–364. doi:10.1016/0022-4596(86)90079-4

    Article  Google Scholar 

  34. Martin MJ, Qiang GH, Schleich DM (1988) New low-temperature synthesis of transition-metal sulfides. Inorg Chem 27(16):2804–2808. doi:10.1021/ic00289a013

    Article  Google Scholar 

  35. Bensalem A, Schleich DM (1988) Novel low temperature synthesis of titanium sulfide. Mater Res Bull 23(6):857–868. doi:10.1016/0025-5408(88)90080-3

    Article  Google Scholar 

  36. Bensalem A, Schleich DM (1990) Low temperature preparation of amorphous niobium sulfide. Mater Res Bull 25(3):349–356. doi:10.1016/0025-5408(90)90107-d

    Article  Google Scholar 

  37. Bensalem A, Schleich DM (1991) Low-temperature synthesis of vanadium sulfides. Inorg Chem 30(9):2052–2055. doi:10.1021/ic00009a021

    Article  Google Scholar 

  38. Pedoussaut NM, Lind C (2008) Facile synthesis of troilite. Inorg Chem 47(2):392–394. doi:10.1021/ic701636h

    Article  Google Scholar 

  39. Zhou X, Soldat AC, Lind C (2014) Phase selective synthesis of copper sulfides by non-hydrolytic sol–gel methods. RSC Adv 4(2):717-726

    Google Scholar 

  40. Carmalt CJ, Dinnage CW, Parkin IP, Peters ES, Molloy K, Colucci MA (2003) The use of hexamethyldisilathiane for the synthesis of transition metal sulfides. Polyhedron 22(9):1255–1262. doi:10.1016/s0277-5387(03)00114-1

    Article  Google Scholar 

  41. Loktev VM (1999) On sign reversal of the linear thermal expansion coefficient of fullerite C-60 at helium temperatures. Low Temp Phys 25(10):823–825

    Article  Google Scholar 

  42. ICDD (2006) Powder diffraction file. International Centre for Diffraction Data, Newtown Square

    Google Scholar 

Download references

Acknowledgments

This work was supported under National Science Foundation Grant DMR-1005911. The Scanning Electron Microscope was purchased under Grant CRIF-0840474.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cora Lind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Heinrich, C.P., Kluenker, M. et al. Non-hydrolytic sol–gel synthesis of tantalum sulfides. J Sol-Gel Sci Technol 69, 596–604 (2014). https://doi.org/10.1007/s10971-013-3262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3262-8

Keywords

Navigation