Skip to main content
Log in

Development Trends in Selective Hydrogenation Upgrading of 5-Hydroxymethylfurfural Catalyzed by Heterogeneous Metal Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

5-Hydroxymethylfurfural (HMF) is a crucial platform molecule derived from biomass, with the potential for conversion into a wide array of products, intermediates, or monomers through various transformations including hydrogenation, oxidation, reductive amination, etherification, and decarbonylation due to its diverse functional groups (hydroxy, aldehyde, furan ring). Particularly, diverse products can be derived from the hydrogenation of C=O, C=C, and C–OH, posing a significant challenge in developing active and highly selective catalysts. This minireview addresses recent developments in heterogeneous catalysts and their application to HMF hydrogenation. Emphasis is placed on hydrogenation pathways and the construction of catalytic systems. The aim is to provide researchers with a comprehensive understanding of hydrogenation, hydrogenolysis, and dehydrogenation reactions applicable to biomass conversion. Additionally, current challenges and future opportunities are outlined to guide further studies towards more efficient and scalable processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [42]. Copyright 2023, Elsevier

Fig. 2

Reproduced with permission from Ref. [20]. Copyright 2023, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [29]. Copyright 2021, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [25]. Copyright 2021, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [30]. Copyright 2021, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [44]. Copyright 2021, Nature

Fig. 7

Adapted with permission from Ref. [56]. Copyright 2014, Wiley–VCH

Fig. 8

Adapted with permission from Ref. [57]. Copyright 2011, Wiley–VCH

Similar content being viewed by others

Data availability

The primary data that support the plots within this paper and other finding of this study are available from the corresponding author on reasonable request.

References

  1. Lang M, Li H (2022) Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation. ACS Sustain Chem Eng 10(40):13208–13243. https://doi.org/10.1021/acssuschemeng.2c04266

    Article  CAS  Google Scholar 

  2. Chacón-Huete F, Messina C, Cigana B, Forgione P (2022) Diverse applications of biomass-derived 5-hydroxymethylfurfural and derivatives as renewable starting materials. Chemsuschem 15(13):e202200328. https://doi.org/10.1002/cssc.202200328

    Article  CAS  PubMed  Google Scholar 

  3. Luo J, Yun H, Mironenko AV, Goulas K, Lee JD, Monai M, Wang C, Vorotnikov V, Murray CB, Vlachos DG, Fornasiero P, Gorte RJ (2016) Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals. ACS Catal 6(7):4095–4104. https://doi.org/10.1021/acscatal.6b00750

    Article  CAS  Google Scholar 

  4. Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Ed 49(37):6616–6618. https://doi.org/10.1002/anie.201002267

    Article  CAS  Google Scholar 

  5. Nilges P, Schröder U (2013) Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals. Energy Environ Sci 6(10):2925–2931. https://doi.org/10.1039/C3EE41857J

    Article  CAS  Google Scholar 

  6. Yang P, Cui Q, Zu Y, Liu X, Lu G, Wang Y (2015) Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst. Catal Commun 66:55–59. https://doi.org/10.1016/j.catcom.2015.02.014

    Article  CAS  Google Scholar 

  7. Wang G-H, Hilgert J, Richter FH, Wang F, Bongard H-J, Spliethoff B, Weidenthaler C, Schüth F (2014) Platinum–cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat Mater 13(3):293–300. https://doi.org/10.1038/nmat3872

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Wang Q, Wu Y, Peng J, Gu X-K, Ding M (2022) Dual-oriented selectivity switching for highly efficient biomass upgrading via selective C-O bond activation. ACS Catal 12(19):12027–12035. https://doi.org/10.1021/acscatal.2c03736

    Article  CAS  Google Scholar 

  9. Gan J, Zhang J, Zhang B, Chen W, Niu D, Qin Y, Duan X, Zhou X (2020) Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. J Energy Chem 45:59–66. https://doi.org/10.1016/j.jechem.2019.09.024

    Article  Google Scholar 

  10. Zhang F, Guo H, Liu M, Zhao Y, Hong F, Li J, Dong Z, Qiao B (2023) Enhancing the chemoselective hydrogenation of nitroarenes: designing a novel surface-strained carbon-based Pt nanocatalyst. Chin J Catal 48:195–204. https://doi.org/10.1016/S1872-2067(23)64424-9

    Article  CAS  Google Scholar 

  11. Wang C, Ye B, Zhou R, Jiang Y, Hou Z (2022) Structure-activity relationship for the catalytic hydrogenation of nitrobenzene by single platinum atoms supported on nitrogen-doped carbon. ACS Appl Nano Mater 5(9):13601–13611. https://doi.org/10.1021/acsanm.2c03361

    Article  CAS  Google Scholar 

  12. Wang X, Zhang C, Jin B, Liang X, Wang Q, Zhao Z, Li Q (2021) Pt–carbon interaction-determined reaction pathway and selectivity for hydrogenation of 5-hydroxymethylfurfural over carbon supported Pt catalysts. Catal Sci Technol 11(4):1298–1310. https://doi.org/10.1039/D0CY01920H

    Article  CAS  Google Scholar 

  13. Vikanova K, Redina E, Kapustin G, Chernova M, Tkachenko O, Nissenbaum V, Kustov L (2021) Advanced room-temperature synthesis of 2,5-Bis(hydroxymethyl)furan—a monomer for biopolymers—from 5-hydroxymethylfurfural. ACS Sustain Chem Eng 9(3):1161–1171. https://doi.org/10.1021/acssuschemeng.0c06560

    Article  CAS  Google Scholar 

  14. Chen Q, Li T, Zhou Y, Bi Y, Guo S, Liu X, Kang H, Wang M, Liu L, Xing E, Yang D (2020) Selective hydrogenation of 5-hydroxymethylfurfural via zeolite encapsulation to avoid further hydrodehydroxylation. Ind Eng Chem Res 59(26):12004–12012. https://doi.org/10.1021/acs.iecr.0c01320

    Article  CAS  Google Scholar 

  15. Kumar R, Lee H-H, Chen E, Du Y-P, Lin C-Y, Prasanseang W, Solos T, Choojun K, Sooknoi T, Xie R-K, Lee J-F, Chung P-W (2023) Facile synthesis of the atomically dispersed hydrotalcite oxide supported copper catalysts for the selective hydrogenation of 5–hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan. Appl Catal B 329:122547. https://doi.org/10.1016/j.apcatb.2023.122547

    Article  CAS  Google Scholar 

  16. Feng Y, Yan G, Wang T, Jia W, Zeng X, Sperry J, Sun Y, Tang X, Lei T, Lin L (2019) Cu1–Cu0 bicomponent CuNPs@ZIF-8 for highly selective hydrogenation of biomass derived 5-hydroxymethylfurfural. Green Chem 21(16):4319–4323. https://doi.org/10.1039/C9GC01331H

    Article  CAS  Google Scholar 

  17. Sarkar C, Paul R, Chandra Shit S, Trinh QT, Koley P, Rao BS, Beale AM, Pao C-W, Banerjee A, Mondal J (2021) Navigating copper-atom-pair structural effect inside a porous organic polymer cavity for selective hydrogenation of biomass-derived 5-hydroxymethylfurfural. ACS Sustain Chem Eng 9(5):2136–2151. https://doi.org/10.1021/acssuschemeng.0c07594

    Article  CAS  Google Scholar 

  18. Wang Q, Feng J, Zheng L, Wang B, Bi R, He Y, Liu H, Li D (2020) Interfacial structure-determined reaction pathway and selectivity for 5-(hydroxymethyl)furfural hydrogenation over Cu-based catalysts. ACS Catal 10(2):1353–1365. https://doi.org/10.1021/acscatal.9b03630

    Article  CAS  Google Scholar 

  19. Zhao W, Huang Z, Yang L, Liu X, Xie H, Liu Z (2022) Highly efficient syntheses of 2,5-bis(hydroxymethyl)furan and 2,5-dimethylfuran via the hydrogenation of biomass-derived 5-hydroxymethylfurfural over a nickel–cobalt bimetallic catalyst. Appl Surf Sci 577:151869. https://doi.org/10.1016/j.apsusc.2021.151869

    Article  CAS  Google Scholar 

  20. Zhang Y, Rezayan A, Wang K, Wang J, Xu CC, Nie R (2023) On-demand, highly tunable, and selective 5-hydroxymethylfurfural hydrogenation to furan diols enabled by Ni and Ni3Ga alloy catalysts. ACS Catal 13(1):803–814. https://doi.org/10.1021/acscatal.2c05451

    Article  CAS  Google Scholar 

  21. Wang T, Xie W, Pang Y, Qiu W, Feng Y, Li X, Wei J, Tang X, Lin L (2022) Solvent-free hydrogenation of 5-hydroxymethylfurfural and furfural to furanyl alcohols and their self-condensation polymers. Chemsuschem 15(13):e202200186. https://doi.org/10.1002/cssc.202200186

    Article  CAS  PubMed  Google Scholar 

  22. Williams CL, Chang C-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ (2012) Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal 2(6):935–939. https://doi.org/10.1021/cs300011a

    Article  CAS  Google Scholar 

  23. Wang Q, Yu Z, Feng J, Fornasiero P, He Y, Li D (2020) Insight into the effect of dual active Cu0/Cu+ sites in a Cu/ZnO-Al2O3 catalyst on 5-hydroxylmethylfurfural hydrodeoxygenation. ACS Sustain Chem Eng 8(40):15288–15298. https://doi.org/10.1021/acssuschemeng.0c05235

    Article  CAS  Google Scholar 

  24. Shang Y, Liu C, Zhang Z, Wang S, Zhao C, Yin X, Zhang P, Liu D, Gui J (2020) Insights into the synergistic effect in Pd immobilized to MOF-derived Co-CoOx@N-doped carbon for efficient selective hydrogenolysis of 5-hydroxylmethylfurfural. Ind Eng Chem Res 59(14):6532–6542. https://doi.org/10.1021/acs.iecr.9b07099

    Article  CAS  Google Scholar 

  25. Wu D, Zhang S, Hernández WY, Baaziz W, Ersen O, Marinova M, Khodakov AY, Ordomsky VV (2021) Dual metal-acid Pd-Br catalyst for selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran at ambient temperature. ACS Catal 11(1):19–30. https://doi.org/10.1021/acscatal.0c03955

    Article  CAS  Google Scholar 

  26. Hu B, Warczinski L, Li X, Lu M, Bitzer J, Heidelmann M, Eckhard T, Fu Q, Schulwitz J, Merko M, Li M, Kleist W, Hattig C, Muhler M, Peng B (2021) Formic acid-assisted selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over bifunctional Pd nanoparticles supported on N-doped mesoporous carbon. Angew Chem Int Ed Engl 60(12):6807–6815. https://doi.org/10.1002/anie.202012816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang K, Meng Q, Wu H, He M, Han B (2022) Selective hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran under mild conditions using Pd/MOF-808. ACS Sustain Chem Eng 10(31):10286–10293. https://doi.org/10.1021/acssuschemeng.2c02393

    Article  CAS  Google Scholar 

  28. Li X, Zhang L, Deng Q, Chen S, Wang J, Zeng Z, Deng S (2022) Promoted hydrogenolysis of furan aldehydes to 2,5-dimethylfuran by defect engineering on Pd/NiCo(2) O(4). Chemsuschem 15(13):e202102532. https://doi.org/10.1002/cssc.202102532

    Article  CAS  PubMed  Google Scholar 

  29. Deng Q, Zhu J, Zhong Y, Li X, Wang J, Cai J, Zeng Z, Zou J-J, Deng S (2021) MOF-encapsulating metal-acid interfaces for efficient catalytic hydrogenolysis of biomass-derived aromatic aldehydes. ACS Sustain Chem Eng 9(33):11127–11136. https://doi.org/10.1021/acssuschemeng.1c02998

    Article  CAS  Google Scholar 

  30. Turkin A, Eyley S, Preegel G, Thielemans W, Makshina E, Sels BF (2021) How trace impurities can strongly affect the hydroconversion of biobased 5-hydroxymethylfurfural? ACS Catal 11(15):9204–9209. https://doi.org/10.1021/acscatal.1c01949

    Article  CAS  Google Scholar 

  31. Xiao T, Liu X, Xu G, Zhang Y (2021) Phase tuning of ZrO2 supported cobalt catalysts for hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran under mild conditions. Appl Catal B 295:120270. https://doi.org/10.1016/j.apcatb.2021.120270

    Article  CAS  Google Scholar 

  32. Nguyen CV, Yeh J-Y, Tran TV, Wu KCW (2022) Highly efficient one-pot conversion of saccharides to 2,5-dimethylfuran using P-UiO-66 and Ni–Co@NC noble metal-free catalysts. Green Chem 24(13):5070–5076. https://doi.org/10.1039/D2GC01408D

    Article  CAS  Google Scholar 

  33. Liu Y, Shi X, Hu J, Liu K, Zeng M, Hou Y, Wei Z (2022) Highly effective activated carbon-supported Ni-Mn bifunctional catalyst for selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran. Chemsuschem 15(13):e202200193. https://doi.org/10.1002/cssc.202200193

    Article  CAS  PubMed  Google Scholar 

  34. Albonetti S, Hu C, Saravanamurugan S (2022) Preface to special issue on green conversion of HMF. ChemSusChem 15(13):e202201057. https://doi.org/10.1002/cssc.202201057

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Dong M, Peng M, Mei Q, Wang Y, Yang J, Yang Y, Chen B, Liu S, Xiao D, Liu H, Ma D, Han B (2022) Crystal-phase engineering of PdCu nanoalloys facilitates selective hydrodeoxygenation at room temperature. Innovation 3(1):100189. https://doi.org/10.1016/j.xinn.2021.100189

    Article  CAS  PubMed  Google Scholar 

  36. Peng Y, Li X, Gao T, Li T, Yang W (2019) Preparation of 5-methylfurfural from starch in one step by iodide mediated metal-free hydrogenolysis. Green Chem 21(15):4169–4177. https://doi.org/10.1039/C9GC01645G

    Article  CAS  Google Scholar 

  37. Galkin KI, Ananikov VP (2019) Towards improved biorefinery technologies: 5-methylfurfural as a versatile C6 platform for biofuels development. Chemsuschem 12(1):185–189. https://doi.org/10.1002/cssc.201802126

    Article  CAS  PubMed  Google Scholar 

  38. Xu J, Miao X, Liu L, Wang Y, Yang W (2021) Direct synthesis of 5-methylfurfural from d-fructose by Iodide-mediated transfer hydrogenation. Chemsuschem 14(23):5311–5319. https://doi.org/10.1002/cssc.202102021

    Article  CAS  PubMed  Google Scholar 

  39. Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3(12):2655–2668. https://doi.org/10.1021/cs400616p

    Article  CAS  Google Scholar 

  40. Li S, Du J, Zhang B, Liu Y, Mei Q, Meng Q, Dong M, Du J, Zhao Z, Zheng L, Han B (2022) Selective hydrogenation of 5-(Hydroxymethyl)furfural to 5-methylfurfural by exploiting the synergy between steric hindrance and hydrogen spillover. Acta Phys Chim Sin 38(10):2206019. https://doi.org/10.3866/pku.whxb202206019

    Article  Google Scholar 

  41. Liu Y, Zhang B, Xia J, Douthwaite M, Dong M, Yuan H, Cheng X, Luan S, Wu Y, Zhao Z, Tai J, Chen L, Su B, Han B, Liu H (2024) Atomic NbOx overlayers on palladium nanoparticles enhance selective hydrodehydroxylation. Chem Eng J 479:147687. https://doi.org/10.1016/j.cej.2023.147687

    Article  CAS  Google Scholar 

  42. Dong L, Morales-Vidal J, Mu L, Li L, López N, Pérez-Ramírez J, Chen Z (2023) Selective hydrogenolysis of 5-hydroxymethylfurfural to 5-methylfurfural over Au/TiO2. Appl Catal B 335:122893. https://doi.org/10.1016/j.apcatb.2023.122893

    Article  CAS  Google Scholar 

  43. Tai W, Fu S, Liu T-H, Yang H-Q, Hu C-W (2022) Mechanism of preferential hydrogenation of hydroxymethyl group to aldehyde group in 5-hydroxymethylfurfural over W2C-based catalyst. Chemsuschem 15(13):e202200174. https://doi.org/10.1002/cssc.202200174

    Article  CAS  PubMed  Google Scholar 

  44. Li S, Dong M, Yang J, Cheng X, Shen X, Liu S, Wang Z-Q, Gong X-Q, Liu H, Han B (2021) Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nat Commun 12(1):584. https://doi.org/10.1038/s41467-020-20878-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen J, Liu R, Guo Y, Chen L, Gao H (2015) Selective Hydrogenation of biomass-based 5-hydroxymethylfurfural over catalyst of palladium immobilized on amine-functionalized metal-organic frameworks. ACS Catal 5(2):722–733. https://doi.org/10.1021/cs5012926

    Article  CAS  Google Scholar 

  46. Fulignati S, Antonetti C, Licursi D, Pieraccioni M, Wilbers E, Heeres HJ, Raspolli Galletti AM (2019) Insight into the hydrogenation of pure and crude HMF to furan diols using Ru/C as catalyst. Appl Catal A 578:122–133. https://doi.org/10.1016/j.apcata.2019.04.007

    Article  CAS  Google Scholar 

  47. Mishra DK, Lee HJ, Truong CC, Kim J, Suh Y-W, Baek J, Kim YJ (2020) Ru/MnCo2O4 as a catalyst for tunable synthesis of 2,5-bis(hydroxymethyl)furan or 2,5-bis(hydroxymethyl)tetrahydrofuran from hydrogenation of 5-hydroxymethylfurfural. Mol Catal 484:110722. https://doi.org/10.1016/j.mcat.2019.110722

    Article  CAS  Google Scholar 

  48. Alamillo R, Tucker M, Chia M, Pagán-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem 14(5):1413–1419. https://doi.org/10.1039/C2GC35039D

    Article  CAS  Google Scholar 

  49. Kong X, Zhu Y, Zheng H, Dong F, Zhu Y, Li Y-W (2014) Switchable synthesis of 2,5-dimethylfuran and 2,5-dihydroxymethyltetrahydrofuran from 5-hydroxymethylfurfural over Raney Ni catalyst. RSC Adv 4(105):60467–60472. https://doi.org/10.1039/C4RA09550B

    Article  CAS  Google Scholar 

  50. Connolly TJ, Considine JL, Ding Z, Forsatz B, Jennings MN, MacEwan MF, McCoy KM, Place DW, Sharma A, Sutherland K (2010) Efficient synthesis of 8-Oxa-3-aza-bicyclo[3.2.1]octane hydrochloride. Org Process Res Dev 14(2):459–465. https://doi.org/10.1021/op9002642

    Article  CAS  Google Scholar 

  51. Perret N, Grigoropoulos A, Zanella M, Manning TD, Claridge JB, Rosseinsky MJ (2016) Catalytic response and stability of nickel/alumina for the hydrogenation of 5-hydroxymethylfurfural in water. Chemsuschem 9(5):521–531. https://doi.org/10.1002/cssc.201501225

    Article  CAS  PubMed  Google Scholar 

  52. Nakagawa Y, Tomishige K (2010) Total hydrogenation of furan derivatives over silica-supported Ni–Pd alloy catalyst. Catal Commun 12(3):154–156. https://doi.org/10.1016/j.catcom.2010.09.003

    Article  CAS  Google Scholar 

  53. Nakagawa Y, Tamura M, Tomishige K (2017) Supported metal catalysts for total hydrogenation of furfural and 5-hydroxymethylfurfural. J Jpn Petrol Inst 60(1):1–9. https://doi.org/10.1627/jpi.60.1

    Article  CAS  Google Scholar 

  54. Tan J, Cui J, Zhu Y, Cui X, Shi Y, Yan W, Zhao Y (2019) Complete aqueous hydrogenation of 5-hydroxymethylfurfural at room temperature over bimetallic RuPd/graphene catalyst. ACS Sustain Chem Eng 7(12):10670–10678. https://doi.org/10.1021/acssuschemeng.9b01327

    Article  CAS  Google Scholar 

  55. Pomeroy B, Grilc M, Likozar B (2021) Process condition-based tuneable selective catalysis of hydroxymethylfurfural (HMF) hydrogenation reactions to aromatic, saturated cyclic and linear poly-functional alcohols over Ni–Ce/Al2O3. Green Chem 23(20):7996–8002. https://doi.org/10.1039/D1GC02086B

    Article  CAS  Google Scholar 

  56. Liu F, Audemar M, De Oliveira VK, Clacens J-M, De Campo F, Jérôme F (2014) Palladium/carbon dioxide cooperative catalysis for the production of diketone derivatives from carbohydrates. Chemsuschem 7(8):2089–2093. https://doi.org/10.1002/cssc.201402221

    Article  CAS  PubMed  Google Scholar 

  57. Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2011) Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew Chem Int Ed 50(31):7083–7087. https://doi.org/10.1002/anie.201102156

    Article  CAS  Google Scholar 

  58. Althikrallah H, Kunstmann-Olsen C, Kozhevnikova EF, Kozhevnikov IV (2020) Turnover rate of metal-catalyzed hydroconversion of 2,5-dimethylfuran: gas-phase versus liquid-phase. Catalysts 10(10):1171

    Article  CAS  Google Scholar 

  59. Hu X, Li Z, Wang H, Xin H, Li S, Wang C, Ma L, Liu Q (2022) Selective hydrogenolysis of 5-hydroxymethylfurfural to 2-hexanol over Au/ZrO2 catalysts. Chemsuschem 15(13):e202200092. https://doi.org/10.1002/cssc.202200092

    Article  CAS  PubMed  Google Scholar 

  60. Longo L, Taghavi S, Ghedini E, Menegazzo F, Di Michele A, Cruciani G, Signoretto M (2022) Selective hydrogenation of 5-hydroxymethylfurfural to 1-hydroxy-2,5-hexanedione by biochar-supported Ru catalysts. Chemsuschem 15(13):e202200437. https://doi.org/10.1002/cssc.202200437

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez-Padron D, Perosa A, Longo L, Luque R, Selva M (2022) Tuning the selectivity of the hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural under batch multiphase and continuous-flow conditions. Chemsuschem 15(13):e202200503. https://doi.org/10.1002/cssc.202200503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fulignati S, Antonetti C, Wilbers E, Licursi D, Heeres HJ, Raspolli Galletti AM (2021) Tunable HMF hydrogenation to furan diols in a flow reactor using Ru/C as catalyst. J Ind Eng Chem 100:390. https://doi.org/10.1016/j.jiec.2021.04.057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the Science, Education and Industry Integration of Basic Research Projects of Qilu University of Technology (Shandong Academy of Sciences) (Grant No. 2023PX015), Talent research projects of Qilu University of Technology (Shandong Academy of Sciences) (Grant No. 2023RCKY094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guowei Zhou or Huizhen Liu.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhou, G., Liu, H. et al. Development Trends in Selective Hydrogenation Upgrading of 5-Hydroxymethylfurfural Catalyzed by Heterogeneous Metal Catalysts. Top Catal (2024). https://doi.org/10.1007/s11244-024-01951-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01951-7

Keywords

Navigation