Skip to main content
Log in

Controlled morphology of a new 3D Co(II) metal–organic framework (Co-MOF) via green sonochemical synthesis: crystallography, Hirshfeld surface analysis

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanostructures of a cobalt(II) metal–organic framework (MOF), denoted as 4,4′,4″-s-triazin-1,3,5-triyltri-p-aminobenzoate (TATAB) [[Co2(TATAB)(OH)(H2O)2].H2O.0.6O]n {1}, were successfully synthesized using two different experimental techniques: solvothermal and sonochemical strategies. Remarkably, both methods yielded an identical crystal structure. Various characterization techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR), were employed to analyze all the compounds. Compound contains cobalt ions (Co2+) that were determined to be six-coordinated through the analysis of single-crystal X-ray diffraction (SCXRD). The effect of various factors such as temperature, reaction time, reactant concentration, and ultrasonic energy on the synthesis and final morphology of the compounds obtained by sonochemical method was investigated. Finally, Hirshfeld surface analysis (HAS) of compound was conducted. The molecular descriptors obtained at the BLYP/6–311 +  + g (d, p) level of theory framework indicate a unique electronic structure for this complex, characterized by low chemical hardness (η = 1.702 eV), high electrophilicity (ω = 3.637 eV), and a narrow HOMO–LUMO gap (1.55 eV). These descriptors suggest that this complex can be considered a favorable nucleophile in interactions with proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Marandi F et al (2017) Synthesis, spectral and X-ray diffraction of two new 2D lead (II) coordination polymers formed by nicotinic acid N-oxide linkers. J Mol Struct 1149:92–98

    Article  CAS  Google Scholar 

  2. Yang Y et al (2009) Supramolecular networks of hexanuclear cadmium (II): synthesis, crystal structure and emission property. Inorg Chim Acta 362(9):3065–3068

    Article  CAS  Google Scholar 

  3. Moon D et al (2006) Face-driven corner-linked octahedral nanocages: M6L8 cages formed by C 3-symmetric triangular facial ligands linked via C 4-symmetric square tetratopic PdII Ions at truncated octahedron corners. J Am Chem Soc 128(11):3530–3531

    Article  CAS  PubMed  Google Scholar 

  4. Norjmaa G et al (2021) Modeling kinetics and thermodynamics of guest encapsulation into the [M4L6] 12–supramolecular organometallic cage. J Chem Inf Model 61(9):4370–4381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Evans OR, Lin W (2002) Crystal engineering of NLO materials based on metal− organic coordination networks. Acc Chem Res 35(7):511–522

    Article  CAS  PubMed  Google Scholar 

  6. Rashidi N et al (2021) Antibacterial and cytotoxicity assay of two new Zn (ii) complexes: synthesis, characterization, X-ray structure, topology, Hirshfeld surface and thermal analysis. J Mol Struct 1231:129947

    Article  CAS  Google Scholar 

  7. Hanifehpour Y et al (2015) Sonochemical syntheses of two new flower-like nano-scale high coordinated lead (II) supramolecular coordination polymers. Ultrason Sonochem 23:282–288

    Article  CAS  PubMed  Google Scholar 

  8. Sharifzadeh Z, Morsali A (2022) Amine-functionalized metal-organic frameworks: from synthetic design to scrutiny in application. Coord Chem Rev 459:214445

    Article  CAS  Google Scholar 

  9. Caneschi A et al (2001) Cobalt (II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew Chem Int Ed 40(9):1760–1763

    Article  CAS  Google Scholar 

  10. Tanatani A, Mio MJ, Moore JS (2001) Chain length-dependent affinity of helical foldamers for a rodlike guest. J Am Chem Soc 123(8):1792–1793

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Z et al (2023) Coordination-driven self-assembly of dibenzo-18-crown-6 functionalized Pt (II) metallacycles. Chin Chem Lett 34(2):107521

    Article  CAS  Google Scholar 

  12. Roesky HW, Andruh M (2003) The interplay of coordinative, hydrogen bonding and π–π stacking interactions in sustaining supramolecular solid-state architectures: a study case of bis (4-pyridyl)-and bis (4-pyridyl-N-oxide) tectons. Coord Chem Rev 236(1–2):91–119

    Article  CAS  Google Scholar 

  13. Das D, Roy S, Biradha K (2018) Crystal engineering with isosteric triether and triamine linked aromatic tri-carboxylic acids: iso-structurality and synthon interplay in their co-crystals and salts with bis (pyridyl) derivatives. New J Chem 42(24):19953–19962

    Article  CAS  Google Scholar 

  14. Chen XM, Liu GF (2002) Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions. Chem A Eur J 8(20):4811–4817

    Article  CAS  Google Scholar 

  15. Emerson AJ et al (2018) High-connectivity approach to a hydrolytically stable metal–organic framework for CO2 capture from flue gas. Chem Mater 30(19):6614–6618

    Article  CAS  Google Scholar 

  16. Nabipour H et al (2020) Metal-organic frameworks for flame retardant polymers application: a critical review. Compos A Appl Sci Manuf 139:106113

    Article  CAS  Google Scholar 

  17. Karimi M et al (2021) Metal–organic framework. Interface Science and Technology. Elsevier, pp 279–387

    Google Scholar 

  18. Liu W et al (2018) Cobalt complexes as an emerging class of catalysts for homogeneous hydrogenations. Acc Chem Res 51(8):1858–1869

    Article  CAS  PubMed  Google Scholar 

  19. Rahpeyma M, MJ Soltanian Fard, and P Hayati, Green chemistry syntheses of different morphology novel nano-sized cobalt (II) supramolecular: as a precursor for the synthesis of cobalt (II) oxide nanoparticles, thermal, Hirshfeld surface analysis, and biological activities. Iran J Chem Chem Eng 2023

  20. Lin W, Rieter WJ, Taylor KM (2009) Modular synthesis of functional nanoscale coordination polymers. Angew Chem Int Ed 48(4):650–658

    Article  CAS  Google Scholar 

  21. Spokoyny AM et al (2009) Infinite coordination polymer nano-and microparticle structures. Chem Soc Rev 38(5):1218–1227

    Article  CAS  PubMed  Google Scholar 

  22. Li H et al (2015) Multi-component coordination-driven self-assembly toward heterometallic macrocycles and cages. Coord Chem Rev 293:139–157

    Article  Google Scholar 

  23. Zheng S-L et al (2001) Toward designed assembly of microporous coordination networks constructed from silver (I)− hexamethylenetetramine layers. Inorg Chem 40(14):3562–3569

    Article  CAS  PubMed  Google Scholar 

  24. Kirillov AM (2011) Hexamethylenetetramine: an old new building block for design of coordination polymers. Coord Chem Rev 255(15–16):1603–1622

    Article  CAS  Google Scholar 

  25. Barcikowski S et al (2019) Materials synthesis in a bubble. MRS Bull 44(5):382–391

    Article  Google Scholar 

  26. Qiu L-G et al (2008) Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun 31:3642–3644

    Article  Google Scholar 

  27. Sabouni R, Kazemian H, Rohani S (2010) A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chem Eng J 165(3):966–973

    Article  CAS  Google Scholar 

  28. Safarifard V, Morsali A, Joo SW (2013) Sonochemical synthesis and characterization of nano-sized lead (II) 3D coordination polymer: precursor for the synthesis of lead (II) oxybromide nanoparticles. Ultrason Sonochem 20(5):1254–1260

    Article  CAS  PubMed  Google Scholar 

  29. Paulusse JM, Huijbers JP, Sijbesma RP (2006) Quantification of ultrasound-induced chain scission in PdII–phosphine coordination polymers. Chem Eur J 12(18):4928–4934

    Article  CAS  PubMed  Google Scholar 

  30. Suslick KS (1991) The sonochemical hot spot. J Acoust Soc Am 89:1885–1886

    Article  Google Scholar 

  31. Haque E et al (2010) Synthesis of a metal–organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem Eur J 16(3):1046–1052

    Article  CAS  PubMed  Google Scholar 

  32. Jung D-W et al (2010) Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans 39(11):2883–2887

    Article  CAS  PubMed  Google Scholar 

  33. Alavi MA, Morsali A (2010) Syntheses and characterization of Sr (OH) 2 and SrCO3 nanostructures by ultrasonic method. Ultrason Sonochem 17(1):132–138

    Article  CAS  PubMed  Google Scholar 

  34. Rigaku, C.-S., Expert 2.1 b43. The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan, 2014

  35. Sheldrick GM (2015) SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv 71(1):3–8

    Article  PubMed Central  PubMed  Google Scholar 

  36. Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D Biol Crystallogr 65(2):148–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nonius, B., SADABS. Bruker Nonius, Delft, The Netherlands, 2002

  38. Altomare A et al (1999) SIR97: a new tool for crystal structure determination and refinement. J Appl Crystallogr 32(1):115–119

    Article  CAS  Google Scholar 

  39. Turner, M., et al., CrystalExplorer17; University of Western Australia, 2017. (b) Spackman, MA; Jayatilaka, D. CrystEngComm, 2009 11 19

  40. Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 14(7):3576–3586

    Article  CAS  Google Scholar 

  41. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45(4):849–854

    Article  CAS  Google Scholar 

  42. Abbasi A, Moradpour T, Van Hecke K (2015) A new 3D cobalt (II) metal–organic framework nanostructure for heavy metal adsorption. Inorg Chim Acta 430:261–267

    Article  CAS  Google Scholar 

  43. Pakiari AH, Eshghi F (2017) Geometric and electronic structures of vanadium sub-nano clusters, Vn (n= 2–5), and their adsorption complexes with CO and O2 ligands: a DFT-NBO study. Phys Chem Res 5(3):601–615

    CAS  Google Scholar 

  44. Frisch M et al., Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT. See also: URL: http://www.gaussian.com, 2009

  45. Wang YA, Liu S, Parr RG (1997) Laurent series expansions in density functional theory. Chem Phys Lett 267(1–2):14–22

    Article  CAS  Google Scholar 

  46. Molegro A, MVD Molegro Virtual Docker 5.0. Molegro: Aarhus C, Denmark, 2011

  47. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321

    Article  CAS  PubMed  Google Scholar 

  48. Li CG et al (2022) Novel zinc (II) and nickel (II) complexes of a quinazoline-based ligand with an imidazole ring: Synthesis, spectroscopic property, antibacterial activities, time-dependent density functional theory calculations and Hirshfeld surface analysis. Appl Organomet Chem 36(5):e6622

    Article  CAS  Google Scholar 

  49. Tyula YA et al (2018) A new supramolecular zinc (II) complex containing 4-biphenylcarbaldehyde isonicotinoylhydrazone ligand: nanostructure synthesis, catalytic activities and Hirshfeld surface analysis. Appl Organomet Chem 32(3):e4141

    Article  Google Scholar 

  50. Chai YM et al (2022) Antimicrobial activities of two 1-D, 2-D, and 3-D mononuclear Mn (II) and dinuclear Bi (III) complexes: X-ray structures, spectroscopic, electrostatic potential, Hirshfeld surface analysis, and time-dependent/density functional theory studies. Appl Organomet Chem 36(6):e6682

    Article  CAS  Google Scholar 

  51. Tasi G et al (1993) Calculation of electrostatic potential maps and atomic charges for large molecules. J Chem Inf Comput Sci 33(3):296–299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of this investigation by Islamic Azad University, Ahvaz Branch, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Elahe Hosseini worked on the synthesis of nanocomposite. Mohammad Kazem Mohammadi, Haman Tavakkoli, and Ayeh Rayatzadeh characterized the synthesized nanostructure and theory.

Corresponding author

Correspondence to Mohammad Kazem Mohammadi.

Ethics declarations

Competing interests

The author(s) declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.E., Mohammadi, M.K., Hayati, P. et al. Controlled morphology of a new 3D Co(II) metal–organic framework (Co-MOF) via green sonochemical synthesis: crystallography, Hirshfeld surface analysis. J Nanopart Res 26, 100 (2024). https://doi.org/10.1007/s11051-024-05991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05991-8

Keywords

Navigation