Skip to main content
Log in

NMR and X-ray structures of the putative sterol carrier protein 2 from Thermus thermophilus HB8 show conformational changes

  • Published:
Journal of Structural and Functional Genomics

Abstract

Sterol carrier protein 2 (SCP-2), also known as nonspecific lipid transfer protein, is a ubiquitous intracellular ~13 kDa protein found in mammals, insects, plants, archaea, and bacteria. Vertebrate SCP-2 has been implicated in a wide range of lipid-related functions in vitro, although its actual physiological role is still unknown. Tunnels in the protein serve as fatty acid binding vehicles. Here we report the first putative SCP-2 structure from a bacterium: specifically, the NMR and X-ray structures of the TTHA0401 protein (also designated as TT1886) from the extremely thermophilic bacterium Thermus thermophilus. The NMR structure and the two chain structures (chain A and chain B) of the asymmetric crystallographic unit (space group (P212121)) revealed an internal cavity. However, this cavity is open to the outside, forming a tunnel, in only one of those structures (chain A, X-ray). The location of this tunnel is different from the one found in other SCP-2 proteins, and inaccessible cavities have not been seen before in SCP structures. We present evidence that at physiological concentrations, TTHA0401 likely exists as a monomer in equilibrium between open and closed conformations. This equilibrium is influenced by temperature-dependent dynamics, and is likely to be very different at the high temperatures preferred by this hyperthermophilic bacterium. Alternatively, another protein binding to TTHA0401 may induce a conformational change, which would constitute an intriguing metabolic regulation method in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

SCP:

Sterol carrier protein

NOE:

Nuclear overhauser effect

PDB:

Protein data bank

RCSB:

Research collaboratory for structural bioinformatics (http://www.rcsb.org)

References

  1. Edqvist J, Blomqvist K (2006) Fusion and Fission, the evolution of sterol carrier protein-2. J Mol Evol 62:292–306

    Article  CAS  PubMed  Google Scholar 

  2. Seedorf U, Assmann G (1991) Cloning, expression, and nucleotide sequence of rat liver sterol carrier protein 2 cDNAs. J Biol Chem 266(1):630–636

    CAS  PubMed  Google Scholar 

  3. Seedorf U, Ellinghaus P, Roch Nofer P (2000) Sterol carrier protein 2. Biochim Biophys Acta 1486:45–54

    CAS  PubMed  Google Scholar 

  4. Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Hunag H, McIntosh AL, Martin GG, Chao H, Kier AB, Schroeder F (2001) Gene structure, intracellular localization, and functional roles of sterol carrier protein 2. Prog Lipid Res 40:498–563

    Article  CAS  PubMed  Google Scholar 

  5. Stolowich NJ, Petrescu AD, Huang H, Martin GG, Scott AI, Schroeder F (2002) Sterol carrier protein-2: structure reveals function. Cell Mol Life Sci 59:193–212

    Article  CAS  PubMed  Google Scholar 

  6. Kim M-S, Wessely V, Lan Q (2005) Identification of mosquito sterol carrier protein-2 inhibitors. J Lipid Res 46:650–657

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs M, Hafer A, Münch C, Kannenberg F, Teichmann S, Scheibner J, Stange EF, Seedorf U (2001) Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J Biol Chem 276(51):48058–48065

    CAS  PubMed  Google Scholar 

  8. García FL, Szyperski T, Dyer JH, Choinowski T, Seedorf U, Hauser H, Wüthrich K (2000) NMR structure of the sterol carrier protein-2: implications for the biological role. J Mol Biol 295:595–603

    Article  PubMed  Google Scholar 

  9. Haapalainen AM, van Aalten DMF, Meriläinen G, Jalonen JE, Pirilä P, Wierenga RK, Hiltunen JK, Glumoff T (2001) Crystal structure of the liganded SCP-2-like domain of human peroxisomal multifunctional enzyme type 2 at 1.75 Å resolution. J Mol Biol 313:1127–1138

    Article  CAS  PubMed  Google Scholar 

  10. Stanley WA, Filipp FV, Kursula P, Schüller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M (2006) Recognition of a functional peroxisome type 1 target by the dynamic import receptor Pex5p. Mol Cell 24:653–663

    Article  CAS  PubMed  Google Scholar 

  11. Choinowski T, Hauser H, Piontek K (2000) Structure of sterol carrier protein 2 at 1.8 Å resolution reveals a hydrophobic tunnel suitable for lipid binding. Biochemistry 39(8):1897–1902

    Article  CAS  PubMed  Google Scholar 

  12. Dyer DH, Lovell S, Thoden JB, Holden HM, Rayment I, Lan Q (2003) The structural determination of an insect sterol carrier protein-2 with a ligand-bound C16 fatty acid at 1.35 Å resolution. J Biol Chem 278(40):39085–39091

    Article  CAS  PubMed  Google Scholar 

  13. Dyer DH, Wessely V, Forest KT, Lan Q (2008) Three-dimensional structure/function analysis of SCP-2-like2 reveals differences among SCP-2 family members. J Lipid Res 49:644–653

    Article  CAS  PubMed  Google Scholar 

  14. Dyer DH, Vyazunova I, Lorch JM, Forest KT, Lan Q (2009) Characterization of the yellow fever mosquito sterol carrier protein-2 like 3 gene and ligand-bound protein structure. Mol Cell Biochem 326:67–77

    Article  CAS  PubMed  Google Scholar 

  15. Rodrigues ML, Archer M, Martel P, Jacquet A, Cravador A, Carrondo MA (2002) Structure of beta-cinnamomin: a protein toxic to some plant species. Acta Crystallogr Sect D 58:1314–1321

    Article  Google Scholar 

  16. Rodrigues ML, Archer M, Martel P, Miranda S, Thomaz M, Enguita FJ, Baptista RP, Melo EP, Sousa N, Cravador A, Carrondo MA (2006) Crystal structures of the free and sterol-bound forms of beta-cinnamomin. Biochim Biophys Acta 1764:110–121

    CAS  PubMed  Google Scholar 

  17. Boissy G, O’Donohue M, Gaudemer O, Perez V, Pernollet JC, Brunie S (1999) The 2.1 Å structure of an elicitin-ergosterol complex: a recent addition to the sterol carrier protein family. Protein Sci 8:1191–1199

    Article  CAS  PubMed  Google Scholar 

  18. Lascombe M-B, Ponchet M, Venard P, Millat M-L, Blein J-P, Prance T (2002) The 1.45 Å resolution structure of the cryptogein-cholesterol complex: a close up view of a sterol carrier protein (SCP) active site. Acta Crystallog Sec D 58:1442–1447

    Article  Google Scholar 

  19. Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5(1–2):63–68

    Article  CAS  PubMed  Google Scholar 

  20. Matsuda T, Koshiba S, Tochio N, Seki E, Iwasaki N, Yabuki T, Inoue M, Yokoyama S, Kigawa T (2007) Improving cell-free protein synthesis for stable-isotope labeling. J Biomol NMR 37(3):225–229

    Article  CAS  PubMed  Google Scholar 

  21. Goroncy AK, Koshiba S, Tochio N, Tomizawa T, Sato M, Inoue M, Watanabe S, Hayashizaki Y, Tanaka A, Kigawa T, Yokoyama S (2009) NMR solution structures of actin-depolymerizing factor homology domains. Protein Sci 18:2384–2392

    Article  CAS  PubMed  Google Scholar 

  22. Bax A (1994) Multidimensional nuclear magnetic resonance methods for protein studies. Curr Opin Struct Biol 4:738–744

    Article  CAS  Google Scholar 

  23. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi N, Iwahara J, Koshiba S, Tomizawa T, Tochio N, Güntert P, Kigawa T, Yokoyama S (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to the high-throughput NMR structure studies. J Biomol NMR 39:31–52

    Article  CAS  PubMed  Google Scholar 

  25. Johnson B, Blevins R (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  CAS  Google Scholar 

  26. Güntert P (2003) Automated NMR structure calculation. Prog Nucl Magn Reson Spectrosc 43:105–125

    Article  Google Scholar 

  27. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  CAS  PubMed  Google Scholar 

  28. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  29. Terwilliger TC, Berendzen J (1999) Acta Crystallogr D Biol Crystallogr 55:849–861

    Article  CAS  PubMed  Google Scholar 

  30. Terwilliger TC (2000) Acta Crystallogr D Biol Crystallogr 56(8):965–972

    Article  CAS  PubMed  Google Scholar 

  31. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr A 47:110–119

    Article  PubMed  Google Scholar 

  32. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  CAS  PubMed  Google Scholar 

  33. Laskowski RA, Rullmann JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  PubMed  Google Scholar 

  34. Collaborative Computational Project No. 4. (1994) Acta Cryst D 50: 760-763

    Google Scholar 

  35. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  CAS  PubMed  Google Scholar 

  36. DeLano WL (2008) The pymol molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  38. Liang JH, Edelsbrunner P, Fu PV, Sudhakar S, Subramaniam S (1998) Analytical shape computing of macromolecules II: identification and computation of inaccessible cavities inside protein. Proteins 33:18–29

    Article  CAS  PubMed  Google Scholar 

  39. Negi SS, Kolokoltsov AA, Schein CH, Davey RA, Braun W (2006) Determining functionally important amino acid residues of the E1 protein of Venezuelan equine encephalitis virus. J Mol Model 12(6):921–929

    Article  CAS  PubMed  Google Scholar 

  40. Mei G, Di Venere A, Rosato N, Finazzi-Algrò A (2005) The importance of being dimeric. FEBS J 272:16–17

    Article  CAS  PubMed  Google Scholar 

  41. Burgardt NI, Ferreyra RG, Falomir-Lockhart L, Córsico B, Ermácora MR, Ceolín M (2009) Biophysical characterisation and urea-induced unfolding of recombinant Yarrowia lipolytica sterol carrier protein-2. Biochim Biophys Acta BBA 1794(8):1115–1122

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following persons: Tadashi Tomizawa, Makoto Inoue, Masaomi Ikari, Eiko Seki, Yasuko Tomo, Takayoshi Matsuda, Masaaki Aoki, Yukoko Fujikura, Takashi Yabuki, Natsuko Matsuda, Yoko Motoda, Yuki Kamewari-Hayami, Hideaki Tanaka, Miki Idaka, Kazushiga Katsura, Tomomi Uchikubo-Kamo, Machiko Yamaguchi-Hirafuji, Akiko Urushibata, Chie Takemoto, and Yoshitaka Bessho. For stimulating discussions, Geoffrey B. Jameson (Massey University, New Zealand) deserves special mention. This work was supported by the RIKEN Structural Genomics/Proteomics Initiative (RSGI), the National Project on Protein Structural and Functional Analyses, Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goroncy, A.K., Murayama, K., Shirouzu, M. et al. NMR and X-ray structures of the putative sterol carrier protein 2 from Thermus thermophilus HB8 show conformational changes. J Struct Funct Genomics 11, 247–256 (2010). https://doi.org/10.1007/s10969-010-9096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-010-9096-5

Keywords

Navigation