Skip to main content
Log in

Characterization of the yellow fever mosquito sterol carrier protein-2 like 3 gene and ligand-bound protein structure

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The sterol carrier protein-2 like 3 gene (AeSCP-2L3), a new member of the SCP-2 protein family, is identified from the yellow fever mosquito, Aedes aegypti. The predicted molecular weight of AeSCP-2L3 is 13.4 kDa with a calculated pI of 4.98. AeSCP-2L3 transcription occurs in the larval feeding stages and the mRNA levels decrease in pupae and adults. The highest levels of AeSCP-2L3 gene expression are found in the body wall, and possibly originated in the fat body. This is the first report of a mosquito SCP-2-like protein with prominent expression in tissue other than the midgut. The X-ray protein crystal structure of AeSCP-2L3 reveals a bound C16 fatty acid whose acyl tail penetrates deeply into a hydrophobic cavity. Interestingly, the ligand-binding cavity is slightly larger than previously described for AeSCP-2 (Dyer et al. J Biol Chem 278:39085–39091, 2003) and AeSCP-2L2 (Dyer et al. J Lipid Res M700460–JLR200, 2007). There are also an additional 10 amino acids in SCP-2L3 that are not present in other characterized mosquito SCP-2s forming an extended loop between β3 and β4. Otherwise, the protein backbone is exceedingly similar to other SCP-2 and SCP-2-like proteins. In contrast to this observed high structural homology of members in the mosquito SCP2 family, the amino acid sequence identity between the members is less than 30%. The results from structural analysis imply that there have been evolutionary constraints that favor the SCP-2 Cα backbone fold while the specificity of ligand binding can be altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gallegos AM et al (2001) Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 40:498–563. doi:10.1016/S0163-7827(01)00015-7

    Article  PubMed  CAS  Google Scholar 

  2. Krebs KC, Lan Q (2003) Isolation and expression of a sterol carrier protein-2 gene from the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 12:51–60. doi:10.1046/j.1365-2583.2003.00386.x

    Article  PubMed  CAS  Google Scholar 

  3. Lan Q, Massey RJ (2004) Subcellular localization of the mosquito sterol carrier protein-2 and sterol carrier protein-x. J Lipid Res 45:1468–1474. doi:10.1194/jlr.M400003-JLR200

    Article  PubMed  CAS  Google Scholar 

  4. Lan Q, Wessely V (2004) Expression of a sterol carrier protein-x gene in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 13:519–529. doi:10.1111/j.0962-1075.2004.00510.x

    Article  PubMed  CAS  Google Scholar 

  5. Vyazunova I et al (2007) Identification of two sterol carrier protein-2 like genes in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 16:305–314. doi:10.1111/j.1365-2583.2007.00729.x

    Article  PubMed  CAS  Google Scholar 

  6. Dyer DH et al (2007) 3-D structure/function analysis of sterol carrier protein-2-like 2 reveals differences among SCP-2 family members. J Lipid Res M700460–JLR200

  7. Dyer DH et al (2003) The structural determination of an insect sterol carrier protein-2 with a ligand-bound C16 fatty acid at 1.35-A resolution. J Biol Chem 278:39085–39091. doi:10.1074/jbc.M306214200

    Article  PubMed  CAS  Google Scholar 

  8. Riddiford LM, Curtis AT, Kiguch K (1979) Culture of the epidermis of the tobacco hornworm, Manduca sexta. Tissue Cult Assoc Man 5:975–985. doi:10.1007/BF00919715

    Article  Google Scholar 

  9. Ausubel FM et al (1999) Current protocols in molecular biology. Greene Publishing Associates, Inc. and Wiley, New York

    Google Scholar 

  10. McPherson A (1982) Preparation and analysis of protein crystals. Krieger, Malabar

    Google Scholar 

  11. Page R, Stevens RC (2004) Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods Macromol Cryst 34:373–389

    CAS  Google Scholar 

  12. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  13. Storoni LC, McCoy AJ, Read RJ (2004) Likelihood-enhanced fast rotation functions. Acta Crystallogr 60:432–438

    Google Scholar 

  14. McCoy AJ et al (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61:458–464. doi:10.1107/S0907444905001617

    Article  PubMed  Google Scholar 

  15. Zwart PH, Langer GG, Lamzin VS (2004) Modelling bound ligands in protein crystal structures. Acta Crystallogr D Biol Crystallogr 60:2230–2239. doi:10.1107/S0907444904012995

    Article  PubMed  CAS  Google Scholar 

  16. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr 53:240–255

    CAS  Google Scholar 

  17. Leszczynski M (1993) The lattice constant of a nonperfect crystal measured by X-ray diffraction. J Appl Cryst 26:280–283. doi:10.1107/S0021889892011282

    Article  CAS  Google Scholar 

  18. Krzywinski J, Grushko OG, Besansky NJ (2006) Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol 39:417–423. doi:10.1016/j.ympev.2006.01.006

    Article  PubMed  CAS  Google Scholar 

  19. Blitzer EJ, Vyazunova I, Lan Q (2005) Functional analysis of AeSCP-2 using gene expression knockdown in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 14:301–307. doi:10.1111/j.1365-2583.2005.00560.x

    Article  PubMed  CAS  Google Scholar 

  20. Murzin AG et al (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  21. Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713. doi:10.1126/science.6879170

    Article  PubMed  CAS  Google Scholar 

  22. Juers DH, Matthews BW (2005) Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization. Q Rev Biophys 37:105–119. doi:10.1017/S0033583504004007

    Article  Google Scholar 

  23. Canavoso LE et al (2004) Lipid transfer particle mediates the delivery of diacylglycerol from lipophorin to fat body in larval Manduca sexta. J Lipid Res 45:456–465. doi:10.1194/jlr.M300242-JLR200

    Article  PubMed  CAS  Google Scholar 

  24. Yun HK, Jouni ZE, Wells MA (2002) Characterization of cholesterol transport from midgut to fat body in Manduca sexta larvae. Insect Biochem Mol Biol 32:1151–1158. doi:10.1016/S0965-1748(02)00051-6

    Article  PubMed  CAS  Google Scholar 

  25. Krissinel EB et al (2004) The new CCP4 coordinate library as a toolkit for the design of coordinate-related applications in protein crystallography. Acta Crystallogr D Biol Crystallogr 60:2250–2255. doi:10.1107/S0907444904027167

    Article  PubMed  CAS  Google Scholar 

  26. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D60:2256–2268

    CAS  Google Scholar 

  27. Viitanen L et al (2006) Characterization of SCP-2 from Euphorbia lagascae reveals that a single Leu/Met exchange enhances sterol transfer activity. FEBS J 273:5641–5655. doi:10.1111/j.1742-4658.2006.05553.x

    Article  PubMed  CAS  Google Scholar 

  28. Thompson JR, Banaszak LJ (2002) Lipid–protein Interactions in lipovitellin. Biochemistry 41:9398–9409. doi:10.1021/bi025674w

    Article  PubMed  CAS  Google Scholar 

  29. Haapalainen AM et al (2001) Crystal structure of the liganded SCP-2-like domain of human peroxisomal multifunctional enzyme type 2 at 1.75 Å resolution. J Mol Biol 313:1127–1138. doi:10.1006/jmbi.2001.5084

    Article  PubMed  CAS  Google Scholar 

  30. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Wisconsin-Madison College of Agriculture and Life Sciences’ USDA-CSREES Hatch project WIS04963, by grant W9113 M-05-1-0006 from the Deployed War Fighter Protection Research Program (DWFP) administered by the US Armed Forces Pest Management Board (AFPMB), by the National Institute of Health research grant #5R01AI067422 to Q.L. and by the Alex and Lillian Feir Graduate Fellowship to I.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Que Lan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, D.H., Vyazunova, I., Lorch, J.M. et al. Characterization of the yellow fever mosquito sterol carrier protein-2 like 3 gene and ligand-bound protein structure. Mol Cell Biochem 326, 67–77 (2009). https://doi.org/10.1007/s11010-008-0007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0007-z

Keywords

Navigation