Skip to main content
Log in

Densification study of sodium zirconium phosphate-type ceramic for immobilizing radionuclides of Sr prepared with microwave sintering from uranium tailing sand

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Strontium zirconium phosphate (SrZr4(PO4)6) ceramics has high density and chemical inertness, which can safely and effectively immobilize the divalent fission product Sr in the ceramic matrix. In this study, a novel SrZr4(PO4)6 ceramic was synthesized using microwave sintering of uranium tailings. This method features shorter sintering times and efficient energy use. Sr replaces Na in sodium zirconium phosphate (NaZr2(PO4)3) due to similar ionic radii, transforming it into SrZr4(PO4)6 ceramics. The results showed that the sintered samples prepared by holding at 1200 °C for 50 min, which the density of the solidified body reached up to 3.2 g/cm3.The ceramics showcase outstanding leach resistance, with Sr leaching rates far below the nuclear industry standard (1 × 10−2 g m−2 d−1). Similarly, the leaching rates for Na, Zr, P, and Si (10–4–10–6, 10–6–10–8, 10–3–10–4, and 10–2–10−3 g m−2 d−1) are significantly lower than industry standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Inoue T, Sakata M, Miyashiro H, Matsumura T, Sasahara A, Yoshiki N (1991) Development of partitioning and transmutation technology for long-lived nuclides. Nucl Technol 93(2):206–220. https://doi.org/10.13182/nt91-a34506

    Article  CAS  Google Scholar 

  2. Chen S, Shu X, Luo F, Dong H, Xu C, Li B, Shao D, Lu X (2019) Rapid vitrification of simulated Sr2+ radioactive contaminated soil for nuclear emergencies. J Radioanal Nucl Chem 319:115–121. https://doi.org/10.1007/s10967-018-6313-3

    Article  CAS  Google Scholar 

  3. Weber WJ, Navrotsky A, Stefanovsky S, Vance ER, Vernaz E (2009) Materials science of high-level nuclear waste immobilization. MRS Bull 34(1):46–53. https://doi.org/10.1557/mrs2009.12

    Article  CAS  Google Scholar 

  4. Ewing RC, Lutze W (1991) High-level nuclear waste immobilization with ceramics. Ceram Int 17(5):287–293. https://doi.org/10.1016/0272-8842(91)90024-t

    Article  CAS  Google Scholar 

  5. Zhang K, Luo B, Zhang H (2019) Immobilization of CeO2 using single-phase zirconolite and the chemical stability analysis. Mater Res Express 6(11):115526. https://doi.org/10.1088/2053-1591/ab49e4

    Article  Google Scholar 

  6. Caurant D, Loiseau P, Majerus O, Aubin-Chevaldonnet V, Bardez I, Quintas A (2007) Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes. Nova Science, New York

    Google Scholar 

  7. Dacheux N, Clavier N, Robisson AC, Terra O, Audubert F, Lartigue JÉ, Guy C (2004) Immobilisation of actinides in phosphate matrices. C R Chim 7(12):1141–1152. https://doi.org/10.1016/j.crci.2004.02.019

    Article  CAS  Google Scholar 

  8. Lee WE, Gilbert M, Murphy ST, Grimes RW (2013) Opportunities for advanced ceramics and composites in the nuclear sector. J Am Ceram Soc 96(7):2005–2030. https://doi.org/10.1111/jace.12406

    Article  CAS  Google Scholar 

  9. Li Z, Cao Y, Mao X et al (2021) In-situ immobilization of soil containing simulated radionuclide Ce using AC/CaCO3 /Nano-HAP by microwave sintering. J Radioanal Nucl Chem 328(1):315–323. https://doi.org/10.1007/s10967-021-07632-z

    Article  CAS  Google Scholar 

  10. Rawat D, Phapale S, Mishra R, Dash S (2019) Thermodynamic investigation of thorium and strontium substituted monazite solid-solution. Thermochim Acta 674:10–20. https://doi.org/10.1016/j.tca.2019.01.031

    Article  CAS  Google Scholar 

  11. Grote R, Hong T, Shuller-Nickles L, Amoroso J, Tang M, Brinkman KS (2019) Radiation tolerant ceramics for nuclear waste immobilization: structure and stability of cesium containing hollandite of the form (Ba, Cs)1.33(Zn, Ti)8O16 and (Ba, Cs)1.33(Ga, Ti)8O16. J Nucl Mater 518:166–176. https://doi.org/10.1016/j.jnucmat.2019.03.005

    Article  CAS  Google Scholar 

  12. Rigali MJ, Brady PV, Moore RC (2016) Radionuclide removal by apatite. Am Mineral 101(12):2611–2619. https://doi.org/10.2138/am-2016-5769

    Article  Google Scholar 

  13. Kumar S, Buvaneswari G (2013) Synthesis of apatite phosphates containing Cs+, Sr2+ and RE3+ ions and chemical durability studies. Mater Res Bull 48:324–332. https://doi.org/10.1016/j.materresbull.2012.10.027

    Article  CAS  Google Scholar 

  14. Alamo J, Roy R (1986) Crystal chemistry of the NaZr2(PO4)3, NZP or CTP, structure family. J Mater Sci 21:444–450. https://doi.org/10.1007/bf01145507

    Article  CAS  Google Scholar 

  15. Chourasia R, Bohre A, Ambastha RD, Shrivastava OP, Wattal PK (2010) Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium. J Mater Sci 45:533–545. https://doi.org/10.1007/s10853-009-3971-0

    Article  CAS  Google Scholar 

  16. Wang Y, Zhou Y, Han Z, Liu F (2019) Investigation and characterization of crystal structure, mechanical and thermophysical properties of CaZr4-xTixP6O24 ceramics. Ceram Int 45:10596–10602. https://doi.org/10.1016/j.ceramint.2019.02.126

    Article  CAS  Google Scholar 

  17. Pet’kov V, Asabina E, Loshkarev V, Sukhanov M (2016) Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J Nucl Mater 471:122–128. https://doi.org/10.1016/j.jnucmat.2016.01.016

    Article  CAS  Google Scholar 

  18. Miyazaki H, Ushiroda I, Itomura D, Hirashita T, Adachi N, Ota T (2008) Thermal expansion of NaZr2(PO4)3 family ceramics in a low-temperature range. Jpn J Appl Phys 47:7262. https://doi.org/10.1143/jjap.47.7262

    Article  CAS  Google Scholar 

  19. Wang Y, Zhou Y, Song Y, Yang L, Liu F (2018) Mechanical and thermal expansion studies on Ca0.5Sr0.5Zr4-xTixP6O24 ceramics. Ceram Int 44:16698–16702. https://doi.org/10.1016/j.ceramint.2018.06.097

    Article  CAS  Google Scholar 

  20. Wang JL, Wang P, Zhan J, Wei L, Zhu Y, Yang Y, Zhang S (2020) K, Microwave-sintering preparation and densification behavior of sodium zirconium phosphate ceramics with ZnO additive. Ceram Int 46:3023–3027. https://doi.org/10.1016/j.ceramint.2019.10.001

    Article  CAS  Google Scholar 

  21. Scheetz BE, Agrawal DK, Breval E, Roy R (1994) Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: a review. Waste Manag 14:489–505. https://doi.org/10.1016/0956-053x(94)90133-3

    Article  CAS  Google Scholar 

  22. Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M (2011) A wide-ranging review on Nasicon type materials. J Mater Sci 46:2821–2837. https://doi.org/10.1007/s10853-011-5302-5

    Article  CAS  Google Scholar 

  23. Avdeev M (2021) Crystal chemistry of NaSICONs: ideal framework, distortion, and connection to properties. Chem Mat 33:7620–7632. https://doi.org/10.1021/acs.chemmater.1c02695

    Article  CAS  Google Scholar 

  24. Zhan L, Wang J, Wang J, Zhang X, Wei Y, Yang S (2020) Phase evolution and microstructure of new Sr0.5Zr2(PO4)3-NdPO4 composite ceramics prepared by one-step microwave sintering. Ceram Int 46(12):19822–19826. https://doi.org/10.1016/j.ceramint.2020.05.035

    Article  CAS  Google Scholar 

  25. Wang J, Wei Y, Wang J, Zhang X, Wang Y, Li N (2022) Simultaneous immobilization of radionuclides Sr and Cs by sodium zirconium phosphate type ceramics and its chemical durability. Ceram Int 48:12772–12778. https://doi.org/10.1016/j.ceramint.2022.01.147

    Article  CAS  Google Scholar 

  26. Wang J, Zhan L, Wang J, Wen J, Fan L, Wu L (2022) Sr/Ce co-immobilization evaluation and high chemical stability of novel Sr0.5Zr2(PO4)3–CePO4 composite ceramics for nuclear waste forms. J Aust Ceram Soc 58(3):881–889. https://doi.org/10.1007/s41779-022-00736-z

    Article  CAS  Google Scholar 

  27. Bykov D, Konings R, Apostolidis C, Hen A, Colineau E, Wiss T, Raison P (2017) Synthesis and investigation of neptunium zirconium phosphate, a member of the NZP family: crystal structure, thermal behaviour and mössbauer spectroscopy studies. Dalton Trans 46:11626–11635. https://doi.org/10.1039/c7dt02110k

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Chen G, Zhang Q, Shi K, Zhang T, Xie Y, Yang Y, Zhou T, Huang K, Mai Y, Liu Y (2023) Preparation and densification study of sodium zirconium phosphate-doped microwave-sintered uranium tailing ceramics. J Alloy Compd 960:171066. https://doi.org/10.1016/j.jallcom.2023.171066

    Article  CAS  Google Scholar 

  29. Yang M, Wang H, Dang C, Huang Z, Ran G, Chen X, Lu T, Xiao C (2018) Fabrication of Li2TiO3 ceramic pebbles with fine microstructure by microwave sintering. J Nucl Mater 509:330–334. https://doi.org/10.1016/j.jnucmat.2018.07.014

    Article  CAS  Google Scholar 

  30. Marinel S, Manière C, Bilot A, Bilot C, Harnois C, Riquet G, Barthélemy F (2019) Microwave sintering of alumina at 915 MHz: modeling, process control, and microstructure distribution. Materials 12:2544. https://doi.org/10.3390/ma12162544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang H, Shu X, Huang W, Miao Y, Shi M, Chen S, Li B, Luo F, Xie Y, Shao D, Lu X (2021) Rapid solidification of Sr-contaminated soil by consecutive microwave sintering: mechanism and stability evaluation. J Hazard Mater 407:124761. https://doi.org/10.1016/j.jhazmat.2020.124761

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad S, Mahmoud MM, Seifert HJ (2019) Crystallization of two rare-earth aluminosilicate glass-ceramics using conventional and microwave heat-treatments. J Alloys Compd 797:45–57. https://doi.org/10.1016/j.jallcom.2019.05.100

    Article  CAS  Google Scholar 

  33. Yang S, Liang B, Liu C, Liu J, Fang C, Ai Y (2021) Microwave sintering and microwave dielectric properties of (1–x) Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 ceramics. Materials 14:438. https://doi.org/10.3390/ma14020438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng Y, Chen R, Yang M, Wang H, Guo H, Shi Y, Huang Z, Qi J, Shi Q, Lu T (2019) Fast fabrication of high quality Li2TiO3–Li4SiO4 biphasic ceramic pebbles by microwave sintering In comparison with conventional sintering. Ceram Int 45:19022–19026. https://doi.org/10.1016/j.ceramint.2019.06.143

    Article  CAS  Google Scholar 

  35. Ramesh S, Zulkifli N, Tan CY, Wong YH, Tarlochan F, Ramesh S, Teng WD, Sopyan I, Bang LT, Sarhan AAD (2018) Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia. Ceram Int 44:8922–8927. https://doi.org/10.1016/j.ceramint.2018.02.086

    Article  CAS  Google Scholar 

  36. Kaur R, Gupta M, Kulriya PK et al (2022) Structural and electronic behavior of yttrium doped zirconolite ceramic: a potential waste form for burning minor actinides. Phys Scr 97:075806. https://doi.org/10.1088/1402-4896/ac73be

    Article  CAS  Google Scholar 

  37. Wei W, Shao Z, Zhang Y, Qiao R, Gao J (2019) Fundamentals and applications of microwave energy in rock and concrete processing: a review. Appl Therm Eng 157:113751. https://doi.org/10.1016/j.applthermaleng.2019.113751

    Article  Google Scholar 

  38. Naik AH, Deb SB, Chalke AB, Saxena MK, Ramakumar KL, Venugopal V, Dharwadkar SR (2010) Microwave-assisted low temperature synthesis of sodium zirconium phosphate (NZP) and the leachability of some selected fission products incorporated in its structure—a case study of leachability of cesium. J Chem Sci 122:71–82. https://doi.org/10.1007/s12039-010-0009-8

    Article  CAS  Google Scholar 

  39. ASTM (American Society for Testing and Materials) (2014), Standard: C1285–14, standard test methods for determining chemical dura-bility of nuclear, hazardous, and mixed waste glasses and mul-tiphase glass ceramics: the product consistency test (PCT), ASTM International West, Conshohocken, PA. https://doi.org/10.1520/c1285-21

  40. Kumar SP, Gopal B (2015) Simulated monazite crystalline wasteform La0.4Nd0.1Y0.1Gd0.1Sm0.1Ce0.1Ca0.1 (P0.9Mo0.1O4): synthesis, phase stability and chemical durability study. J Nucl Mater 458:224–232. https://doi.org/10.1016/j.jnucmat.2014.12.081

    Article  CAS  Google Scholar 

  41. Buvaneswari G, Varadaraju U (2000) Low leachability phosphate lattices for fixation of select metal ions. Mater Res Bull 35:1313–1323. https://doi.org/10.1016/s0025-5408(00)00316-0

    Article  CAS  Google Scholar 

  42. Hall C, Hamilton A (2015) Porosity–density relations in stone and brick materials. Mater Struct 48:1265–1271. https://doi.org/10.1617/s11527-013-0231-1

    Article  CAS  Google Scholar 

  43. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallog Sect A 32(5):751–767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  44. Frost RL, Xi Y, Scholz R, Belotti FM (2012) Infrared and Raman spectroscopic characterization of the phosphate mineral kosnarite KZr2(PO4)3 in comparison with other pegmatitic phosphates. Transit Met Chem 37:777–782. https://doi.org/10.1007/s11243-012-9652-x

    Article  CAS  Google Scholar 

  45. Kurazhkovskaya V, Bykov D, Borovikova E, Boldyrev N, Mikhalitsyn L, Orlova A (2010) Vibrational spectra and factor group analysis of lanthanide and zirconium phosphates MIII0.33Zr2(PO4)3, where MIII=Y, La–Lu. Vib Spectrosc 52:137–143. https://doi.org/10.1016/j.vibspec.2009.12.002

    Article  CAS  Google Scholar 

  46. Wei Y, Luo P, Wang J, Wen J, Zhan L, Zhang X, Wang J (2020) Microwave-sintering preparation, phase evolution and chemical stability of Na1-2xSrxZr2(PO4)3 ceramics for immobilizing simulated radionuclides. J Nucl Mater 540:152366. https://doi.org/10.1016/j.jnucmat.2020.152366

    Article  CAS  Google Scholar 

  47. Wang J, Wang JX, Zhang YB, Wei YF, Zhang KB, Tan HB, Liang XF (2019) Order-disorder phase structure, microstructure and aqueous durability of (Gd, Sm)2 (Zr, Ce)2O7 ceramics for immobilizing actinides. Ceram Int 45:17898–17904. https://doi.org/10.1016/j.ceramint.2019.06.006

    Article  CAS  Google Scholar 

  48. Zhang K, Wen G, Zhang H, Teng Y (2015) Self-propagating high-temperature synthesis of CeO2 incorporated zirconolite-rich waste forms and the aqueous durability. J Eur Ceram Soc 35(11):3085–3093. https://doi.org/10.1016/j.jeurceramsoc.2015.04.025

    Article  CAS  Google Scholar 

  49. Joonhong A (1998) Characterization of radioactive waste forms and packages technical reports series. Waste Manag 18:61–62. https://doi.org/10.1016/S0956-053X(98)00007-5

    Article  Google Scholar 

  50. Zhang K, He Z, Peng L, Zhang H, Lu X (2018) Self-propagating synthesis of Y2−xNdxTi2O7 pyrochlore and its aqueous durability as nuclear waste form. Scr Mater 146:300–303. https://doi.org/10.1016/j.scriptamat.2017.12.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincere thanks that the National Natural Science Foundation of China (No. 42277458), the Guangdong Province natural sciences fund (No.2023A1515012438), the Shenzhen Science and Technology Innovation Commission Key Technical Project (No. JCYJ20220531103617040), the Project in the Field of Equipment Advance Research (No.80927015101), the Hunan Provincial Natural Science Young Talent Project Fund (No. 22B0423).

Author information

Authors and Affiliations

Authors

Contributions

JL: Conceptualization, Methodology, Investigation, Writing—original draft, Writing -review & editing. GC: Supervision, Data analysis. QZ: Project administration, Funding acquisition, Writing—review & editing. KS: Project administration. TZ: Formal analysis. YX: Data Curation. YY: Resources, Visualization. TZ: Auxiliary experimental operation. KH: purchase. YM: equipment regulation. YL: Project administration, Funding acquisition.

Corresponding authors

Correspondence to QiuCai Zhang or Yong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, G., Zhang, Q. et al. Densification study of sodium zirconium phosphate-type ceramic for immobilizing radionuclides of Sr prepared with microwave sintering from uranium tailing sand. J Radioanal Nucl Chem 333, 1275–1285 (2024). https://doi.org/10.1007/s10967-024-09372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09372-2

Keywords

Navigation