Skip to main content
Log in

Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sodium zirconium phosphate (NZP) is a potential material for immobilization of nuclear effluents. The existence of cesium containing NZP structure was determined on the basis of crystal data of solid solution. It was found that up to ~9.0 wt% of cesium could be loaded into NZP formulations without significant changes of the three-dimensional framework structure. The crystal chemistry of Na1−xCsxZr2P3O12 (x = 0.1–0.4) has been investigated using General Structure Analysis System programming. The CsNZP phases crystallize in the space group R-3c and Z = 6. Powder diffraction data have been subjected to Rietveld refinement to arrive at a satisfactory structural convergence of R-factors. The unit cell volume and polyhedral (ZrO6 and PO4) distortion increase with rise in the mole% of Cs+ in the NZP matrix. The PO4 stretching and bending vibrations in the infrared region have been assigned. SEM, TEM, and EDAX analysis provide analytical evidence of cesium in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hawkins HT, Scheetz BE (1996) In: Proceedings of the material research society 1996, fall meeting, Boston, MA, 2–6 December

  2. Pet’kov VI, Sukhanov MV (2003) Czechoslovak J Phys 53:A671

    Article  Google Scholar 

  3. Hirose Y, Fukasawa T, Agrawal DK, Scheetz BE, Nageswaran R, Curtis JA, Limaye SY (1999) In: WM 1999 conference

  4. Scheetz BE, Agarwal DK, Breval E, Roy R (1994) Waste Manage 14(6):489

    Article  CAS  Google Scholar 

  5. Donald IW, Metcalfe BL, Taylor RNJ (1997) J Mater Sci 32:5851. doi:https://doi.org/10.1023/A:1018646507438

    Article  CAS  Google Scholar 

  6. Shrivastava OP, Chourasia R (2007) J Hazard Mater 153:285

    Article  Google Scholar 

  7. Chourasia R, Shrivastava OP, Wattal PK (2009) J Alloys Compd 473(1–2):579

    Article  CAS  Google Scholar 

  8. Lide DR (1992–1993) Handbook of chemistry and physics, Sect. 11, 73rd ed. CRC Press, Boca Raton, FL

  9. Renaud P, Beaugelin K, Maubert H, Ledenvic P (1997) Cons′equences radiologiques et dosim′etriques de l’accident de Tchernobyl en France (Rapport IPSN 97-03, IPSN, France, 1997)

  10. Rustam R, Vance ER, Alamo J (1982) Mater Res Bull 17:585

    Article  Google Scholar 

  11. JCPDS Powder diffraction data file no. 71-0959 (2000) compiled by International Center for Diffraction Data, USA

  12. Rietveld HM (1996) J Appl Cryst 2:65

    Article  Google Scholar 

  13. Larson AC, Von Dreele RB (2000) General structure analysis system technical manual. LANSCE, MS-H805, Los Almos National Laboratory LAUR 86-748

  14. Kojitani H, Kido M, Akaogi M (2005) Phys Chem Miner 32:290

    Article  CAS  Google Scholar 

  15. Verissimo C, Garrido FMS, Alves OL, Calle P, Juarez AM, Iglesias JE, Rojo JM (1997) Solid State Ionics 100:127

    Article  CAS  Google Scholar 

  16. Govindan Kutty KV, Asuvathraman R, Sridhran R (1998) J Mater Sci 33:4007. doi:https://doi.org/10.1023/A:1004661132398

    Article  Google Scholar 

  17. Lenain GE, McKinstry HA, Limaye SY, Woodward A (1984) Mater Res Bull 19:1451

    Article  CAS  Google Scholar 

  18. Petíkov VI, Orlova AI, Kazantsev GN, Samoilov SG, Spiridonova ML (2001) J Therm Anal Calorim 66:623

    Article  Google Scholar 

  19. Oota T, Yamai I (1986) J Am Ceram Soc 69(1):1

    Article  CAS  Google Scholar 

  20. Lenain GE, McKinstry HA, Alamo J, Agrawal DK (1987) J Mater Sci 22:17. doi:https://doi.org/10.1007/BF01160546

    Article  CAS  Google Scholar 

  21. James A, Rustam R (1986) J Mater Sci 21:444. doi:https://doi.org/10.1007/BF01145507

    Article  Google Scholar 

  22. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  23. Shrivastava OP, Chourasia R (2008) J Chem Crystallogr 38:357

    Article  CAS  Google Scholar 

  24. Brown ID, Shannon RD (1973) Acta Crystallogr A29:266

    Article  Google Scholar 

  25. Breese NE, Keeffe MO (1991) Acta Crystallogr B47:192

    Article  Google Scholar 

  26. Shrivastava OP, Chourasia R, Kumar N (2008) Ann Nucl Energy 35–36:1147

    Article  Google Scholar 

  27. Buvaneswari G, Varadaraju UV (1999) J Solid State Chem 145:227

    Article  CAS  Google Scholar 

  28. Barj M, Perthuis H, Colomban Ph (1983) Solid State Ionics 11:157

    Article  CAS  Google Scholar 

  29. Mbandza A, Bordes E, Courtine P (1985) Mater Res Bull 20:251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Science and Technology (DST), New Delhi, Government of India, for funding research Project Number SR/S3/ME/20/2005-SERC-Engg in its SERC scheme. Thanks are due to sophisticated analytical instrument facility, IIT, Bombay, for TEM analysis and department of Metallurgical Engineering and Material Science IIT, Bombay, for XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Shrivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chourasia, R., Bohre, A., Ambastha, R.D. et al. Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium. J Mater Sci 45, 533–545 (2010). https://doi.org/10.1007/s10853-009-3971-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3971-0

Keywords

Navigation