Skip to main content
Log in

Sr/Ce co-immobilization evaluation and high chemical stability of novel Sr0.5Zr2(PO4)3–CePO4 composite ceramics for nuclear waste forms

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Sodium zirconium phosphate (labeled as NZP)-monazite-type (1-x)Sr0.5Zr2(PO4)3xCePO4 (x = 0–1.0) composite ceramics, which were designed to simultaneously immobilize simulated fission nuclide Sr and variable valence actinide nuclide Ce, were in situ prepared by one-step microwave sintering technique. The feasibility of Sr/Ce co-immobilization was evaluated via an investigation on the phase evolution, microstructure, density, Vickers hardness, and chemical stability of the composite ceramics. The Ce valence state in the composite ceramics was further ascertained by X-ray photoelectron spectroscopy. It was shown that the Sr/Ce co-immobilized composite ceramics only consisted of Sr0.5Zr2(PO4)3 and CePO4 crystalline phases that were compatible well to each other. Sr and Ce were independently incorporated into Sr0.5Zr2(PO4)3 phase and CePO4 phase, respectively. The valence state of Ce in composite ceramics existed in trivalent state. And the existence of CePO4 phase caused the grain refinement and facilitated the densification of the composite ceramics. The composite samples all showed a highly uniform and dense microstructure, whose relative density was higher than 95% and Vickers hardness could attain 774 HV1. Importantly, the series of Sr0.5Zr2(PO4)3–CePO4 composite ceramics exhibited higher chemical stability than that of the monophase Sr0.5Zr2(PO4)3 or CePO4 ceramics, in which the normalized leaching rates of Sr and Ce were below 10−4 g·m−2·day−1 and 10−7 g·m−2·day−1 order of magnitude, respectively. The NZP-monazite-type composite ceramics has the potential to be a host for the disposal of high-level nuclear wastes containing multiple radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ewing, R.C.: Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energ. 29, 63–127 (1995)

    Article  CAS  Google Scholar 

  2. Donald, I.W.: Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes. Tetrahedron Lett. 38, 4199–4202 (2010)

    Google Scholar 

  3. Wei, Y.F., Luo, P., Wang, J.X., Wen, J.W., Zhan, L., Zhang, X., Yang, S.Y., Wang, J.: Microwave-sintering preparation, phase evolution and chemical stability of Na1-2xSrxZr2(PO4)3 ceramics for immobilizing simulated radionuclides. J. Nucl. Mater. 540, 152366 (2020)

    Article  CAS  Google Scholar 

  4. Bohre, A., Shrivastava, O.: Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium and strontium. Int. J. Appl. Ceram. Tec. 10, 552–563 (2013)

    Article  CAS  Google Scholar 

  5. Bykov, D.M., Gobechiya, E.R., Kabalov, Y.K., Orlova, A.I., Tomilin, S.V.: Crystal structures of lanthanide and zirconium phosphates with general general formula Ln0.33Zr2(PO4)3, where Ln=Ce, Eu, Yb. J. Solid. State Chem. 179, 3101–3106 (2006)

    Article  CAS  Google Scholar 

  6. Potanina, E., Golovkina, L., Orlova, A., Nokhrin, A., Boldin, M., Sakharov, N.: Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering. J. Nucl. Mater. 473, 93–98 (2016)

    Article  CAS  Google Scholar 

  7. Rawat, D., Phapale, S., Mishra, R., Dash, S.: Thermodynamic investigation of thorium and strontium substituted monazite solid-solution. Thermochim. Acta 674, 10–20 (2019)

    Article  CAS  Google Scholar 

  8. Zhang, Y.T., Huang, Z.Y., Qi, J.Q., Han, Y., Tang, Z., Wei, H., Duan, J.J., Zeng, Y.Y., Zhang, H.B., Lu, T.C.: Rapid fabrication of fine-grained Gd2-xNdxZr2-5xCe5xO7 ceramics by microwave sintering. J. Alloys. Compounds 781, 710–715 (2019)

    Article  CAS  Google Scholar 

  9. Helean, K.B., Navrotsky, A., Lian, J., Ewing, R.C.: Thermochemical investigations of zirconolite, pyrochlore and brannerite: candidate materials for the immobilization of plutonium. MRS Proc. 807, 297 (2003)

    Article  Google Scholar 

  10. Chartier, A., Meis, C., Gale, J.D.: Computational study of Cs immobilization in the apatites Ca10(PO4)6F2, Ca4La6(SiO4)6F2 and Ca2La8(SiO4)6O2. Phys. Rev. B 64, 085110 (2001)

    Article  Google Scholar 

  11. Amoroso, J., Marra, J.C., Tang, M., Lin, Y., Chen, F., Su, D., Brinkman, K.S.: Melt processed multiphase ceramic waste forms for nuclear waste immobilization. J. Nucl. Mater. 454, 12–21 (2014)

    Article  CAS  Google Scholar 

  12. Clark, B.M., Tumurgoti, P., Sundaram, S.K., Amoroso, J.W., Marra, J.C., Shutthanandan, V., Tang, M.: Radiation damage of hollandite in multiphase ceramic waste forms. J. Nucl. Mater. 494, 61–66 (2017)

    Article  CAS  Google Scholar 

  13. Harkins, D.H.: The durability of single, dual, and multiphase titanate ceramic waste forms for nuclear waste immobilization, Masters Thesis, Clemson University, Clemson, SC (2016)

  14. Clark, B.M., Tumurgoti, P., Sundaram, S.K., Amoroso, J.W., Marra, J.C.: Preparation and characterization of multiphase ceramic designer waste forms. Sci. Rep. 11, 4512 (2021)

    Article  CAS  Google Scholar 

  15. Ma, J., Fang, Z.W., Yang, X.Y., Wang, B., Luo, F., Zhao, X.L., Wang, X.F., Yang, Y.S.: Investigating hollandite-perovskite composite ceramics as a potential waste form for immobilization of radioactive cesium and strontium. J. Mater. Sci. 56, 9644–9654 (2021)

    Article  CAS  Google Scholar 

  16. Teng, Y.C., Wang, S.L., Wu, L., Gui, C.M.: Synthesis and hydrothermal stability of U doped zirconolite–sphene composite materials. Adv. Appl. Ceram. 114, 9–13 (2015)

    Article  CAS  Google Scholar 

  17. Ding, Y., Jiang, Z.D., Xiong, T.H., Bai, Z.M., Zhao, D.D., Dan, H., Duan, T.: Phase and microstructure evolution of 0.2Zr1-xCexO2/Zr1-yCeySiO4 (0≤x+y≤1) ceramics designed to immobilize tetravalent actinides. J. Nucl. Mater. 539, 152318 (2020)

    Article  CAS  Google Scholar 

  18. Teng, Y.C., Wang, Q., Wu, L., Zhao, X.F., Chen, Y., Cao, X., Wang, W.: Effect of reactivity of silicon and magnesium on the preparation of SiC-MgAl2O4 composites for immobilizing graphite. Ceram. Int. 45, 10203–10210 (2019)

    Article  CAS  Google Scholar 

  19. Wang, Q., Teng, Y.C., Wu, L., Zhang, K.B., Zhao, X.F., Hu, Z.: Synthesis and characterization of SiC based composite materials for immobilizing radioactive graphite. J. Nucl. Mater. 504, 94–100 (2018)

    Article  CAS  Google Scholar 

  20. Wang, L., Liang, T.X.: Ceramics for high level radioactive waste solidification. J. Adv. Ceram. 1, 194–203 (2012)

    Article  CAS  Google Scholar 

  21. Hagman, L., Kierkegaard, P., Karvonen, P., Virtanen, A.I., Paasivirta, J.: The crystal structure of NaMe2IV(PO4)3; MeIV= Ge, Ti. Zr. Acta Chem. Scand. 22, 1822–1832 (1968)

    Article  CAS  Google Scholar 

  22. Mutter, D., Urban, D.F., Elsässer, C.: Computational analysis of composition- structure- property- relationships in NZP-type materials for Li-ion batteries. J. Appl. Phys. 125, 215115 (2019)

    Article  Google Scholar 

  23. Wang, Y., Zhou, Y.Y., Han, Z.Q., Liu, F.T.: Investigation and characterization of crystal structure, mechanical and thermophysical properties of CaZr4-xTixP6O24 ceramics. Ceram. Int. 45, 10596–10602 (2019)

    Article  CAS  Google Scholar 

  24. Hashimoto, C., Nakayama, S.: Immobilization of Cs and Sr to HZr2(PO4)3 using an autoclave. J. Nucl. Mater. 396, 197–201 (2010)

    Article  CAS  Google Scholar 

  25. Pet’kov, V., Asabina, E., Loshkarev, V., Sukhanov, M.: Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J. Nucl. Mater. 471, 122–128 (2016)

    Article  CAS  Google Scholar 

  26. Gregg, D.J., Karatchevtseva, I., Thorogood, G.J., Davis, J., Bell, B.D.C., Jackson, M., Dayal, P., Ionescu, M., Triani, G., Short, K., Lumpkin, G.R., Vance, E.R.: Ion beam irradiation effects in strontium zirconium phosphate with NZP-structure type. J. Nucl. Mater. 446, 224–231 (2014)

    Article  CAS  Google Scholar 

  27. Schlenz, H., Heuser, J., Neumann, A., Schmitz, S., Bosbach, D.: Monazite as a suitable actinide waste form,Z. Krist.-Cryst. Mater. 228, 113–123 (2013)

    Article  CAS  Google Scholar 

  28. Ishida, M., Yanagi, Y., Terai, T.R.: Leach rates of composite waste forms of monazite- and zirconium phosphate-type. J. Nucl. Sci. Technol. 24, 404–408 (1987)

  29. Orlova, A., Kitaev, D.: Phosphate monazite- and NaZr2(PO4)3 (NZP)-like ceramics containing uranium and plutonium. Czech. J. Phys. 53, 665–670 (2003)

    Article  Google Scholar 

  30. Orlova, A.L., Ojovan, M.I.: Ceramic mineral waste-Forms for nuclear waste immobilization. Materials 12, 2638 (2019)

    Article  CAS  Google Scholar 

  31. Yang, J., Wan, C.L., Zhao, M., Shahid, M., Pan, W.: Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications. J. Eur. Ceram. Soc. 36, 3809–3814 (2016)

    Article  CAS  Google Scholar 

  32. Sujith, S.S., Arun Kumar, S.L., Mahesh, K.V., Peer Mohamed, A., Ananthakumar, S.: Sintering and thermal shock resistance properties of LaPO4 based composite refractories. T. Indian Ceram. Soc. 73, 161–164 (2014)

    Article  CAS  Google Scholar 

  33. Wang, J.X., Luo, P., Wang, J., Zhan, L., Wei, Y.F., Zhu, Y.M., Yang, S.Y., Zhang, K.B.: Microwave-sintering preparation and densification behavior of sodium zirconium phosphate ceramics with ZnO additive. Ceram. Int. 46, 3023–3027 (2019)

    Article  Google Scholar 

  34. Zhan, L., Wang, J.X., Wang, J., Zhang, X., Wei, Y.F., Yang, S.Y.: Phase evolution and microstructure of new Sr0.5Zr2(PO4)3-NdPO4 composite ceramics prepared by one-step microwave sintering. Ceram. Int. 46, 19822–19826 (2020)

    Article  CAS  Google Scholar 

  35. ASTM (American Society for Testing and Materials), Standard: C1285–14, standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT), ASTM International West, Conshohocken, PA, (2014)

  36. Pratheep Kumar, S., Gopal, B.: Simulated monazite crystalline waste form La0.4Nd0.1Y0.1Gd0.1Sm0.1Ce0.1Ca0.1(P0.9Mo0.1O4): synthesis, phase stability and chemical durability study. J. Nucl. Mater. 458, 224–232 (2015)

    Article  CAS  Google Scholar 

  37. Buvaneswari, G., Varadaraju, U.: Low leachability phosphate lattices for fixation of select metal ions. Mater. Res. Bull. 35, 1313–1323 (2000)

    Article  CAS  Google Scholar 

  38. Rygel, J.L., Pantano, C.G.: Synthesis and properties of cerium aluminosilicophosphate glasses. J. Non Cryst. Solids 355, 2622–2629 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 11705153 and 12075195).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxia Wang or Jin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhan, L., Wang, J. et al. Sr/Ce co-immobilization evaluation and high chemical stability of novel Sr0.5Zr2(PO4)3–CePO4 composite ceramics for nuclear waste forms. J Aust Ceram Soc 58, 881–889 (2022). https://doi.org/10.1007/s41779-022-00736-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00736-z

Keywords

Navigation