Skip to main content
Log in

In-situ immobilization of soil containing simulated radionuclide Ce using AC/CaCO3/Nano-HAP by microwave sintering

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Compared with glass or ceramic, glass–ceramic has the advantages of both glass and ceramic. In this study, activated carbon (AC), calcium carbonate (CaCO3), and nano-hydroxyapatite (nano-HAP) were used as modifiers, to synthetize glass–ceramics for suppressing radionuclides in contaminated soil. According to results of EDS and XRD, part of the simulated radionuclide Ce was immobilized in Ce-monazite. With increasing the mass ratio of nano-HAP, the generation of the ceramic phase was promoted. The thermal stability was verified by DSC. Therefore, microwave immobilization for contaminated soil, amended by AC/CaCO3/nano-HAP, can be a good routine for safe disposing of radioactive soil.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burns PC, Ewing RC, Navrotsky A (2012) Nuclear fuel in a reactor accident. Science 335(6073):1184–1188

    Article  CAS  PubMed  Google Scholar 

  2. Mallampati SR, Mitoma Y, Okuda T, Simion C, Lee BK (2015) Dynamic immobilization of simulated radionuclide 133Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites. J Environ Radioact 139:118–124

    Article  CAS  PubMed  Google Scholar 

  3. Stenke L, Axelsson B, Ekman M, Larsson S, Reizenstein P (1987) Radioactive iodine and cesium in travellers to different parts of Europe after the Chernobyl accident. Acta Oncol 26(3):207–210

    Article  CAS  PubMed  Google Scholar 

  4. Ehrlich PR, Harte J, Harwell MA, Raven PH, Sagan C, Woodwell GM, Eisner T (1983) Long-term biological consequences of nuclear war. Science 222(4630):1293–1300

    Article  CAS  PubMed  Google Scholar 

  5. Harada KH, Fujii Y, Adachi A, Tsukidate A, Asai F, Koizumi A (2013) Dietary intake of radiocesium in adult residents in Fukushima prefecture and neighboring regions after the Fukushima nuclear power plant accident: 24-h food-duplicate survey in December 2011. Environ Sci Technol 47(6):2520–2526

    Article  CAS  PubMed  Google Scholar 

  6. Cheng Y, Wang Y, Sang H, Wu Y, Wei Y (2020) Study on the immobilization of cesium absorbed by copper ferrocyanide using allophane through pressing/sintering method. J Nucl Mater 532:152008

    Article  CAS  Google Scholar 

  7. Nagatani K, Kiribayashi S, Okada Y, Otake K, Yoshida K, Tadokoro S, Kawatsuma S (2013) Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. Journal of Field Robotics 30(1):44–63

    Article  Google Scholar 

  8. Spalding BP (2001) Fixation of radionuclides in soil and minerals by heating. Environ Sci Technol 35(21):4327–4333

    Article  CAS  PubMed  Google Scholar 

  9. Lee WE, Ojovan MI, Stennett MC, Hyatt NC (2006) Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv Appl Ceram 105(1):3–12

    Article  CAS  Google Scholar 

  10. Amoroso J, Marra JC, Tang M, Lin Y, Chen F, Su D, Brinkman KS (2014) Melt processed multiphase ceramic waste forms for nuclear waste immobilization. J Nucl Mater 454(1–3):12–21

    Article  CAS  Google Scholar 

  11. Kim M, Kim HG, Kim S, Yoon JH, Sung JY, Jin JS, Hong KS (2020) Leaching behaviors and mechanisms of vitrified forms for the low-level radioactive solid wastes. J Hazard Mater 384:121296

    Article  CAS  PubMed  Google Scholar 

  12. Almahayni T, Beresford NA, Crout NM, Sweeck L (2019) Fit-for-purpose modelling of radiocaesium soil-to-plant transfer for nuclear emergencies: a review. J Environ Radioact 201:58–66

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Ding Y, Lu X, Mao X, Song M (2016) Rapid and efficient disposal of radioactive contaminated soil using microwave sintering method. Mater Lett 175:165–168

    Article  CAS  Google Scholar 

  14. Chen Y, Jing Z, Cai K, Li J (2018) Hydrothermal conversion of Cs-polluted soil into pollucite for Cs immobilization. Chem Eng J 336:503–509

    Article  CAS  Google Scholar 

  15. Donald IW, Metcalfe BL, Taylor RJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32(22):5851–5887

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhang Z, Wei T, Kong L, Kim YJ, Gregg DJ (2020) Pyrochlore glass-ceramics fabricated via both sintering and hot isostatic pressing for minor actinide immobilization. J Am Ceram Soc 103(10):5470–5479

    Article  CAS  Google Scholar 

  17. Zhu H, Wang F, Liao Q, Zhu Y (2020) Synthesis and characterization of zirconolite-sodium borosilicate glass-ceramics for nuclear waste immobilization. J Nucl Mater 532:152026

    Article  CAS  Google Scholar 

  18. Wu K, Wang F, Liao Q, Zhu H, Liu D, Zhu Y (2020) Synthesis of pyrochlore-borosilicate glass-ceramics for immobilization of high-level nuclear waste. Ceram Int 46(5):6085–6094

    Article  CAS  Google Scholar 

  19. Yuan X, Qing Q, Zhang S, Lu X (2017) Vitrification of radioactive contaminated soil by means of microwave energy. In: AIP conference proceedings, Vol 1820, No 1, p 040032. AIP Publishing LLC

  20. Zhang S, Shu X, Chen S, Yang H, Hou C, Mao X, Lu X (2017) Rapid immobilization of simulated radioactive soil waste by microwave sintering. J Hazard Mater 337:20–26

    Article  CAS  PubMed  Google Scholar 

  21. Kim M, Heo J (2015) Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing. J Nucl Mater 467:224–228

    Article  CAS  Google Scholar 

  22. El-Alaily NA, Abdallah WM, Sabrah BA, Saad AI (2017) Preparation and characterization of immobilizing radioactive waste glass from industrial wastes. Silicon 9(1):117–130

    Article  CAS  Google Scholar 

  23. Ul Hassan M, Iqbal S, Yun JI, Ryu HJ (2019) Immobilization of radioactive corrosion products by cold sintering of pure hydroxyapatite. J Hazard Mater 374:228–237

    Article  CAS  PubMed  Google Scholar 

  24. Đorđević MP, Maletaškić J, Stanković N, Babić B, Yoshida K, Yano T, Matović B (2018) In-situ immobilization of Sr radioactive isotope using nanocrystalline hydroxyapatite. Ceram Int 44(2):1771–1777

    Article  Google Scholar 

  25. Weber WJ, Ewing RC, Catlow CRA, De La Rubia TD, Hobbs LW, Kinoshita C, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13(6):1434–1484

    Article  CAS  Google Scholar 

  26. Dacheux N, Clavier N, Podor R (2013) Versatile Monazite: Resolving geological records and solving challenges in materials science. Monazite as a promising long-term radioactive waste matrix: Benefits of high-structural flexibility and chemical durability. Am Miner 98:833–847

    Article  CAS  Google Scholar 

  27. Skorodumova NV, Ahuja R, Simak SI, Abrikosov IA, Johansson B, Lundqvist BI (2001) Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles. Phys Rev B 64(11):115108

    Article  Google Scholar 

  28. Pinet O, Phalippou J, Di Nardo C (2006) Modeling the redox equilibrium of the Ce4+/Ce3+ couple in silicate glass by voltammetry. J Non-Cryst Solids 352(50–51):5382–5390

    Article  CAS  Google Scholar 

  29. Thornber SM, Stennett MC, Hyatt NC (2017) Investigation of Ce incorporation in zirconolite glass-ceramics for UK plutonium disposition. MRS Adv 2(13):699–704

    Article  CAS  Google Scholar 

  30. Zhang Y, Guan H (2003) Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires. J Cryst Growth 256(1–2):156–161

    CAS  Google Scholar 

  31. Lumpkin GR, Geisler-Wierwille T (2012) Minerals and natural analogues. Rudy JM Konings (Editor-in-Chief). Compr Nuclear Mater 5:563–600

    Article  CAS  Google Scholar 

  32. Poitrasson F, Oelkers E, Schott J, Montel JM (2004) Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21 C to 300 C: implications for rare earth element mobility in crustal fluids. Geochim Cosmochim Acta 68(10):2207–2221

    Article  CAS  Google Scholar 

  33. Wood SA, Williams-Jones AE (1994) The aqueous geochemistry of the rare-earth elements and yttrium 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments. Chem Geol 115(1–2):47–60

    Article  CAS  Google Scholar 

  34. Perera DS, Blackford MG, Vance ER, Hanna JV, Finnie KS, Nicholson CL (2004) Geopolymers for the immobilization of radioactive waste. In: MRS Online Proceedings Library Archive, p 824

  35. Gautam CR, Kumar D, Parkash O, Singh P (2013) Synthesis, IR, crystallization and dielectric study of (Pb, Sr) TiO 3 borosilicate glass–ceramics. Bull Mater Sci 36(3):461–469

    Article  CAS  Google Scholar 

  36. Kränzlein E, Harmel J, Pöllmann H, Krcmar W (2019) Influence of the Si/Al ratio in geopolymers on the stability against acidic attack and the immobilization of Pb2+ and Zn2+. Constr Build Mater 227:116634

    Article  Google Scholar 

  37. Jiang R, Xu L, Wu N (2020) Preparation and characterization of acrylic resin encapsulated n-dodecanol microcapsule phase change material. Mater Res Express 7(9):095501

    Article  CAS  Google Scholar 

  38. Connor PA, Dobson KD, McQuillan AJ (1999) Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir 15(7):2402–2408

    Article  CAS  Google Scholar 

  39. Menazea AA, Abdelghany AM, Osman WH, Hakeem NA, Abd El-Kader FH (2019) Precipitation of silver nanoparticles in silicate glasses via Nd: YAG nanosecond laser and its characterization. J Non-Cryst Solids 513:49–54

    Article  CAS  Google Scholar 

  40. ElBatal FH, Azooz MA, Hamdy YM (2009) Preparation and characterization of some multicomponent silicate glasses and their glass–ceramics derivatives for dental applications. Ceram Int 35(3):1211–1218

    Article  CAS  Google Scholar 

  41. Niu YH, Fan XY, Ren D, Wang W, Li Y, Yang Z, Cui L (2020) Effect of Na2CO3 content on thermal properties of foam-glass ceramics prepared from smelting slag. Mater Chem Phys 256:123610

    Article  CAS  Google Scholar 

  42. Prnová A, Valúchová J, Mutlu N, Parchovianský M, Klement R, Plško A, Galusek D (2020) Thermal behaviour and photoluminescence properties of Er-and Nd-doped yttrium aluminate glasses. J Therm Anal Calorim 142:129–138

    Article  Google Scholar 

  43. Shriver-Lake LC, Donner B, Edelstein R, Breslin K, Bhatia SK, Ligler FS (1997) Antibody immobilization using heterobifunctional crosslinkers. Biosens Bioelectron 12(11):1101–1106

    Article  CAS  PubMed  Google Scholar 

  44. Patel KB, Peuget S, Schuller S, Grygiel C, Monnet I, Farnan I (2019) Swift heavy ion-irradiated multi-phase calcium borosilicates: implications to molybdenum incorporation, microstructure, and network topology. J Mater Sci 54(18):11763–11783

    Article  CAS  Google Scholar 

  45. Su C, McGinn PJ (2013) The effect of Ca2+ and Al3+ additions on the stability of potassium disilicate glass as a soot oxidation catalyst. Appl Catal B 138:70–78

    Article  Google Scholar 

  46. König J, Petersen RR, Yue Y (2015) Fabrication of highly insulating foam glass made from CRT panel glass. Ceram Int 41(8):9793–9800

    Article  Google Scholar 

  47. Muralithran G, Ramesh S (2000) The effects of sintering temperature on the properties of hydroxyapatite. Ceram Int 26(2):221–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial supports from Southwest University of Science and Technology (No.18LZXY05) and the Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory (No.15yyhk01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Cao, Y., Mao, X. et al. In-situ immobilization of soil containing simulated radionuclide Ce using AC/CaCO3/Nano-HAP by microwave sintering. J Radioanal Nucl Chem 328, 315–323 (2021). https://doi.org/10.1007/s10967-021-07632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07632-z

Keywords

Navigation