Skip to main content
Log in

Covalent organic frameworks (COF) materials for selective radionuclides removal from water

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The efficient and safety elimination of radioactive nuclides from complicated systems is crucial to both the healthy and fast development of nuclear energy, and the protection of environment and human health. Covalent organic framework (COF) materials have studied extensively in multidisciplinary research areas attributed to their outstanding physicochemical properties. This review summarized the recent works for the removal of radionuclides by COFs through the strategies of sorption, reduction, chemical precipitations, and discussed the reaction mechanisms from batch/column results, theoretical calculation and spectroscopy analysis. The challenge was given in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y, Gao X, Li X, Zhang M, Jia Z, Deng Y, Tian Y, Li S, Ma L (2020) Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long-lived radionuclides. Angew Chem Int Ed 59:4168–4175. https://doi.org/10.1002/anie.201916360

    Article  CAS  Google Scholar 

  2. Maher K, Bargar JR, Brown GE (2013) Environmental speciation of actinides. Inorg Chem 52:3510–3532. https://doi.org/10.1021/ic301686d

    Article  CAS  PubMed  Google Scholar 

  3. Wang SF, Li Y, Liu Q, Wang JY, Zhao YJ, Cai YW, Li H, Chen ZS (2023) Photo-/electro-/piezo-catalytic elimination of environmental pollutants. J Photoch Photobio A 437:114435. https://doi.org/10.1016/j.jphotochem.2022.114435

    Article  CAS  Google Scholar 

  4. Iryna P (2017) Toxicity of radionuclides in determining harmful effects on humans and environment. J Environ Sci Public Health 1:115–119. https://doi.org/10.26502/JESPH.011

    Article  Google Scholar 

  5. Masok FB, Masiteng PL, Mavunda RD, Maleka PP (2016) Health effects due to radionuclides content of solid minerals within port of Richards bay, South Africa. Int J Environ Res Public Health 13:1180. https://doi.org/10.3390/ijerph13121180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu S, Freeman SP, Hou X, Watanabe A, Yamaguchi K, Zhang L (2013) Iodine isotopes in precipitation: temporal responses to 129I emissions from the Fukushima nuclear accident. Environ Sci Technol 47:10851–10859. https://doi.org/10.1021/es401527q

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X (2022) Metal-organic framework nanocrystals derived hollow porous materials: synthetic strategies and emerging applications. Innovation 3:100281. https://doi.org/10.1016/j.xinn.2022.100281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang S, Wang JQ, Zhang Y, Ma JZ, Huang LTY, Yu SJ, Chen L, Song G, Qiu M, Wang XX (2021) Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review. Environ Poll 291:118076. https://doi.org/10.1016/j.envpol.2021.118076

    Article  CAS  Google Scholar 

  9. Liu ZX, Xu Z, Buyong F, Chay TC, Li Z, Cai Y, Hu BW, Zhu YL, Wang X (2022) Modified biochar: synthesis and mechanism for removal of environmental heavy metals. Carbon Res 1:8. https://doi.org/10.1007/s44246-022-00007-3

    Article  Google Scholar 

  10. Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Gao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X (2022) Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coord Chem Rev 467:214615. https://doi.org/10.1016/j.ccr.2022.214615

    Article  CAS  Google Scholar 

  11. Yang H, Liu Y, Chen Z, Waterhouse GIN, Ma S, Wang X (2022) Emerging technologies for uranium extraction from seawater. Sci China Chem 65:2335–2337. https://doi.org/10.1007/s11426-022-1358-1

    Article  CAS  Google Scholar 

  12. Chen H, Gao Y, Li J, Fang Z, Bolan N, Bhatnagar A, Gao B, Hou D, Wang S, Song H, Yang X, Shaheen SM, Meng J, Chen W, Rinklebe J, Wang H (2022) Engineered biochar for environmental decontamination in aquatic and soil systems: a review. Carbon Res 1:4. https://doi.org/10.1007/s44246-022-00005-5

    Article  Google Scholar 

  13. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AG, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170. https://doi.org/10.1126/science.112041

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Wei G, Xie Y, Shang H, Chen Z, Wang H, Yang H, Waterhouse GIN, Wang X (2022) Constructing nanotraps in covalent organic framework for uranium sequestration. Separat Purif Technol 303:122256. https://doi.org/10.1016/j.seppur.2022.122256

    Article  CAS  Google Scholar 

  15. Gendy EA, Oyekunle DT, Ali J, Ifthikar J, Ramadan AEMM, Chen Z (2021) High performance removal of radionuclides by porous organic frameworks from the aquatic environment: a review. J Environ Radioact 238–239:106710. https://doi.org/10.1016/j.jenvrad.2021.106710

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Zhuang S (2019) Covalent organic frameworks (COFs) for environmental applications. Coord Chem Rev 400:213046. https://doi.org/10.1016/j.ccr.2019.213046

    Article  CAS  Google Scholar 

  17. Cai Y, Ling Q, Yi Y, Chen Z, Yang H, Hu B, Liang L, Wang X (2022) Application of covalent organic frameworks in environmental pollution management. Appl Catal A Gen 643:118733. https://doi.org/10.1016/j.apcata.2022.118733

    Article  CAS  Google Scholar 

  18. Liu XL, Pang HW, Liu XW, Li Q, Zhang N, Mao L, Qiu MQ, Hu BW, Yang H, Wang XK (2021) Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2:100076. https://doi.org/10.1016/j.xinn.2021.100076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding SY, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–569. https://doi.org/10.1039/C2CS35072F

    Article  CAS  PubMed  Google Scholar 

  20. Feng X, Ding XS, Jiang DL (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022. https://doi.org/10.1039/C2CS35157A

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Tasawar H, Wang X (2018) Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356. https://doi.org/10.1039/c7cs00543a

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Wang X, Zheng T, Cuello NC, Goenaga G, Zawodninshi TA, Tian H, Wright JT, Meulenberg RW, Wang X, Xia Z, Ma S (2021) Chromium nitride-encapsulated hollow chromium-nitrogen-carbon capsules boosting oxygen reduction catalysis in proton exchange membrane fuel cell. CCS Chem 3:208–218. https://doi.org/10.31635/ccschem.020.202000645

    Article  CAS  Google Scholar 

  23. Yang H, Liu Y, Liu X, Wang X, Tian H, Waterhouse GIN, Kruge PE, Telfer SG, Ma S (2022) Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2:227–234. https://doi.org/10.1016/j.esci.2022.02.005

    Article  Google Scholar 

  24. Chen ZS, He X, Li Q, Yang H, Liu Y, Wu LN, Liu ZX, Hu BW, Wang XK (2022) Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction. J Environ Sci 122:1–13. https://doi.org/10.1016/j.jes.2021.10.003

    Article  CAS  Google Scholar 

  25. Wang SQ, Shi L, Yu SJ, Pang HW, Qiu MQ, Song G, Fu D, Hu BW, Wang XX (2022) Effect of Shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite. J Environ Radioact 242:106798. https://doi.org/10.1016/j.jenvrad.2021.106798

    Article  CAS  PubMed  Google Scholar 

  26. Lindner H, Schneider E (2015) Review of cost estimates for uranium recovery from seawater. Energy Econ 49:9–22. https://doi.org/10.1016/j.eneco.2015.01.016

    Article  Google Scholar 

  27. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117:13935–14013. https://doi.org/10.1021/acs.chemrev.7b00355

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Guo X, Li X, Zhang M, Jia Z, Deng Y, Tian Y, Li S, Ma L (2020) Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long-lived radionuclides. Angew Chem Int Ed 59:4168–4175. https://doi.org/10.1002/anie.201916360

    Article  CAS  Google Scholar 

  29. Li X, Qi Y, Yue G, Wu Q, Li Y, Zhang M, Guo X, Li X, Ma L, Li S (2019) Solvent- and catalyst-reee synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(VI) and hg(II). Green Chem 21:649–657. https://doi.org/10.1039/C8GC03295E

    Article  CAS  Google Scholar 

  30. Cui WR, Zhang CR, Jiang W, Li FF, Liang RP, Liu J, Qiu JD (2020) Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat Commun 11:436. https://doi.org/10.1038/s41467-020-14289-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang L, Pang GP, Xiao SJ, Tan QG, Zheng QQ, Liang RP, Qiu JD (2021) Facile construction of covalent organic framework nanozyme for colorimetric detection of uranium. Small 17:2102944. https://doi.org/10.1002/smll.202102944

    Article  CAS  Google Scholar 

  32. Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma SQ (2018) Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater 30:1705479. https://doi.org/10.1002/adma.201705479

    Article  CAS  Google Scholar 

  33. Cheng G, Zhang A, Zhao Z, Chai Z, Hu B, Han B, Ai Y, Wang X (2021) Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci Bull 66:1994–2001. https://doi.org/10.1016/j.scib.2021.05.012

    Article  CAS  Google Scholar 

  34. Liu FL, Lou YT, Xia F, Hu BW (2023) Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and cr(VI) by adsorption-reduction synergistic effect. Chem Eng J 454:140318. https://doi.org/10.1016/j.cej.2022.140318

    Article  CAS  Google Scholar 

  35. Xu Z, Tsang DCW (2022) Redox-induced transformation of potentially toxic elements with organic carbon in soil. Carbon Res 1:9. https://doi.org/10.1007/s44246-022-00010-8

    Article  Google Scholar 

  36. Yao L, Hu Y, Zou Y, Ji Z, Hu S, Wang C, Zhang P, Yang H, Shen Z, Tang D, Zhang S, Zhao G, Wang X (2022) Selective and efficient photo-extraction of aqueous cr(VI) as solid-state polyhydroxy cr(V) complex for environment remediation and resources recovery. Environ Sci Technol 56:14030–14037. https://doi.org/10.1021/acs.est.2c03994

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Hu Y, Shen Z, Cai Y, Ji Z, Tan X, Liu Z, Zhao G, Hu S, Wang X (2021) Rapid and selective uranium extraction from aqueous solution under visible light in the absence of Solid Photocatalyst. Sci China Chem 64:1323–1331. https://doi.org/10.1007/s11426-021-9987-1

    Article  CAS  Google Scholar 

  38. Zhang Y, Sun H, Gao F, Zhang S, Han Q, Li J, Fang M, Cai Y, Hu B, Tan X, Wang X (2022) Insights into photothermally enhanced photocatalytic U(VI) extraction by a step-scheme heterojunction. Research. 2022: 9790320. https://doi.org/10.34133/2022/9790320

  39. Hao M, Liu X, Liu X, Zhang J, Yang H, Waterhouse GIN, Wang X, Ma S (2021) Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chem 4:2294–2307. https://doi.org/10.31635/ccschem.022.202201897

    Article  CAS  Google Scholar 

  40. Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse GIN, Kruge PE, Telfer SG, Ma S (2021) Functionalized iron – nitrogen – carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv Mater 33:2106621. https://doi.org/10.1002/adma.202106621

    Article  CAS  Google Scholar 

  41. Liu X, Xie Y, Hao M, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X (2022) Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime – functionalized in – N–C Catalyst. Adv Sci 9:2201735. https://doi.org/10.1002/advs.202201735

    Article  CAS  Google Scholar 

  42. Liu C, Hsu PC, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:17007. https://doi.org/10.1038/nenergy.2017.7

    Article  CAS  Google Scholar 

  43. Pointurier F, Marie O (2013) Use of micro-raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J Raman Spectrosc 44:1753–1579. https://doi.org/10.1002/jrs.4392

    Article  CAS  Google Scholar 

  44. Stefaniak EA, Alsecz A, Sajó IE, Worobiec A, Máthé Z, Török S, Grieken VR (2008) Recognition of uranium oxides in soil particulate matter by means of µ-Raman spectrometry. J Nucl Mater 381:278–283. https://doi.org/10.1016/j.jnucmat.2008.08.036

    Article  CAS  Google Scholar 

  45. Cai Y, Zhang Y, Lv Z, Zhang S, Gao F, Fang M, Kong M, Liu P, Tan X, Hu B, Wang XK (2022) Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl Catal B Environ 310:121343. https://doi.org/10.1016/j.apcatb.2022.121343

    Article  CAS  Google Scholar 

  46. He L, Liu S, Chen L, Dai X, Li J, Zhang M, Ma F, Zhang C, Yang Z, Zhou R, Chai Z, Wang S (2019) Mechanism unravelling for ultrafast and selective 99TcO4 uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chem Sci 10:4293–4305. https://doi.org/10.1039/C9SC00172G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li J, Dai X, Zhu L, Xu C, Zhang D, Silver MA, Li P, Chen L, Li Y, Zuo D, Zhang H, Xiao C, Chen J, Diwu J, Farha OK, Albrecht-Schmitt TE, Chai Z, Wang S (2018) 99TcO4 remediation by a cationic polymeric network. Nat Commun 9:3007. https://doi.org/10.1038/s41467-018-05380-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li J, Li B, Shen N, Chen L, Guo Q, Chen L, He L, Dai X, Chai Z, Wang S (2021) Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4 cleanup from alkaline nuclear waste. ACS Cent Sci 7:1441–1450. https://doi.org/10.1021/acscentsci.1c00847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Di ZY, Moa YN, Yuan H, Zhou Y, Jin J, Li CP (2022) Covalent organic frameworks (COFs) for sequestration of 99TcO4. Chem Res Chin Univ 38:290–295. https://doi.org/10.1007/s40242-022-1447-9

    Article  CAS  Google Scholar 

  50. Da HJ, Yang CX, Yan XP (2019) Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution. Environ Sci Technol 53:5212–5220. https://doi.org/10.1021/acs.est.8b06244

    Article  CAS  PubMed  Google Scholar 

  51. Hao M, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X (2022) Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4. Sci Bull 67:924–932. https://doi.org/10.1016/j.scib.2022.02.012

    Article  CAS  Google Scholar 

  52. Li Y, Li X, Li J, Liu W, Cheng G, Ke H (2021) Phosphine-based covalent organic framework for highly efficient iodine capture. Microp Mesop Mater 325:111351. https://doi.org/10.1016/j.micromeso.2021.111351

    Article  CAS  Google Scholar 

  53. Chen R, Hu T, Zhang W, He C, Li Y (2021) Synthesis of nitrogen-containing covalent organic framework with reversible iodine capture capability. Microp Mesop Mater 312:110739. https://doi.org/10.1016/j.micromeso.2020.110739

    Article  CAS  Google Scholar 

  54. Zhai L, Sun S, Chen P, Zhang Y, Sun Q, Xu Q, Wu Y, Nie R, Li Z, Mi L (2021) Constructing cationic covalent organic frameworks by a post-function process for an exceptional iodine capture via electrostatic interactions. Mater Chem Front 5:5463–5470. https://doi.org/10.1039/D1QM00416F

    Article  CAS  Google Scholar 

  55. Liu C, Jin Y, Yu Z, Gong L, Wang H, Yu B, Zhang W, Jiang J (2022) Transformation of porous organic cages and covalent organic frameworks with efficient iodine vapor capture performance. J Am Chem Soc 144:12390–12399. https://doi.org/10.1021/jacs.2c03959

    Article  CAS  PubMed  Google Scholar 

  56. Xie Y, Pan T, Lei Q, Chen C, Dong X, Yuan Y, Shen J, Cai Y, Zhou C, Pinnau I, Han Y (2021) Ionic functionalization of multivariate covalent organic frameworks to achieve an exceptionally high iodine capture capacity. Angew Chem Int Ed 60:22432–22440. https://doi.org/10.1002/anie.202108522

    Article  CAS  Google Scholar 

  57. He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C, Pan T, Ma F, Chen J, Yuan M, Zhang Y, Chen L, Zhou R, Han Y, Cha Z, Wang S (2021) A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem 7:699–714. https://doi.org/10.1016/j.chempr.2020.11.024

    Article  CAS  Google Scholar 

  58. Liu X, Zhang A, Ma R, Wu B, Wen T, Ai Y, Sun M, Jin J, Wang S, Wang X (2022) Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chin Chem Lett 33:3549–3555. https://doi.org/10.1016/j.cclet.2022.03.001

    Article  CAS  Google Scholar 

  59. Jiang B, Li X, Guo X, Jia Z, Zhang J, Li Y, Ma L (2022) Efficient gaseous iodine capture enhanced by charge-induced effect of covalent organic frameworks with dense tertiary-amine nodes. Chin Chem Lett 33:3556–3560.

    Article  CAS  Google Scholar 

  60. Zhong X, Liang W, Lu Z, Qiu M, Hu B (2021) Ultra-high capacity of graphene oxide conjugated covalent organic framework nanohybrid for U(VI) and Eu(III) adsorption removal. J Mol Liquid 323:114603. https://doi.org/10.1016/j.molliq.2020.114603

    Article  CAS  Google Scholar 

  61. Wang Y, Liu W, Bai Z, Zheng T, Silver MA, Li Y, Wang Y, Wang X, Diwu J, Chai Z, Wang S (2018) Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angew Chem Int Ed 57:5783–5787. https://doi.org/10.1002/anie.201802173

    Article  CAS  Google Scholar 

  62. Yuan M, Wang X, Chen L, Zhang M, He L, Ma F, Liu W, Wang S (2021) Tailoring pore structure and morphologies in covalent organic frameworks for Xe/Kr capture and separation. Chem Res Chin Univ 37:679–685. https://doi.org/10.1007/s40242-021-1064-z

    Article  CAS  Google Scholar 

  63. Wang X, Ma F, Xiong S, Bai Z, Zhang Y, Li G, Chen J, Yuan M, Wang Y, Dai X, Chai Z, Wang S (2022) Efficient Xe/Kr separation based on a lanthanide-organic framework with one-dimensional local positively charged rhomboid channels. ACS Appl Mater Interfaces 14:22233–22241. https://doi.org/10.1021/acsami.2c05258

    Article  CAS  PubMed  Google Scholar 

  64. Lv SW, Liu JM, Wang ZH, Ma H, Li CY, Zhao N, Wang S (2019) Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. J Environ Sci 80:169–185. https://doi.org/10.1016/j.jes.2018.12.010

    Article  CAS  Google Scholar 

  65. Hu Y, Shen Z, Li B, Tan X, Han B, Ji Z, Wang J, Zhao G, Wang X (2022) State-of-the-art progress for the selective crystallization of actinides, synthesis of actinide compounds and their functionalization. J Hazard Mater 426:127838. https://doi.org/10.1016/j.jhazmat.2021.127838

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Hu SX, Chen L, Liang C, Yin X, Zhang H, Li A, Sheng D, Diwu J, Wang X, Li J, Chai Z, Wang S (2020) Stabilization of plutonium(V) within a crown ether inclusion complex. CCS Chem 2:425–431. https://doi.org/10.31635/ccschem.020.202000152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (22276054) was acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongshan Chen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, S., Li, Y. et al. Covalent organic frameworks (COF) materials for selective radionuclides removal from water. J Radioanal Nucl Chem 332, 1101–1111 (2023). https://doi.org/10.1007/s10967-022-08710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08710-6

Keywords

Navigation