Skip to main content
Log in

Characterization and adsorption capacity of Brazilian kaolin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study has evaluated chemical, radiological composition and determined the cation exchange capacity (CEC) for three commercially available Brazilians raw kaolins. The mineralogical characterization indicated the presence of kaolinite, kaolinite and quartz and pirophylliteas the mains mineral constitution of the samples. The results of the adsorption study indicated that the three samples did not show a significant increase in CEC due to acid or thermal treatments. However, the sample that presented the highest kaolinite content and CEC showed an effective cost benefit for water treatment application with low energy and chemical reagents spending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[20])

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acevedo NIA, Rocha MCG, Bertolino LC (2017) Mineralogical characterization of natural clays from Brazilian Southeast region for industrial applications. Cerâmica. https://doi.org/10.1590/0366-69132017633662045

    Article  Google Scholar 

  2. Harvey CC, Lagaly G (2006) Conventional applications. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, 1st edn. Elsevier Ltd, Amsterdam

    Google Scholar 

  3. Murray HH (2007) Applied clay mineralogy: occurrences, processing and applications of Kaolins, Bentonites, Palygorskite-sepiolite, and common clays. Elsevier Science, Amsterdam

    Google Scholar 

  4. Moussi B, Medhioub M, Hatira N, Yans J, Hajjaji W, Rocha F, Labrincha A, Jamoussi F (2011) Identification and use of white clayey deposits from the area of Tamra (northern Tunisia) as ceramic raw materials. Clay Miner. https://doi.org/10.1180/claymin.2011.046.1.165

    Article  Google Scholar 

  5. Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manage. https://doi.org/10.1016/j.jenvman.2012.08.028

    Article  PubMed  Google Scholar 

  6. Cai L, Cui L, Lin B, Lin B, Zhang J, Huang Z (2018) Advanced treatment of piggery tail water by dual coagulation with Na+ zeolite and Mg/Fe chloride and resource utilization of the coagulation sludge for efficient decontamination of Cd2+. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.08.192

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jintakosol T, Nitayaphat W (2016) Adsorption of silver (I) from aqueous solution using chitosan/montmorillonite composite beads. Mater Res. https://doi.org/10.1590/1980-5373-MR-2015-0738

    Article  Google Scholar 

  8. Krstić V, Urošević T, Pešovski B (2018) A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem Eng Sci. https://doi.org/10.1016/j.ces.2018.07.022

    Article  Google Scholar 

  9. Kumar PS, Vincent C, Kirthika K, Kumar KS (2010) Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon Brazilian. J Chem Eng. https://doi.org/10.1590/s0104-66322010000200012

    Article  Google Scholar 

  10. Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J. https://doi.org/10.1016/j.cej.2009.10.029

    Article  Google Scholar 

  11. Gładysz-Płaska A, Majdan M, Grabias E (2014) Adsorption of La, Eu and Lu on raw and modified red clay. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-014-3111-4

    Article  Google Scholar 

  12. Feng X, Onel O, Council-Troche M, Noble A, Yoon R (2021) A study of rare earth ion-adsorption clays: the speciation of rare earth elements on kaolinite at basic pH. Appl Clay Sci. https://doi.org/10.1016/j.clay.2020.105920

    Article  Google Scholar 

  13. Arima T, Idemitsu K, Inagaki Y, Kawamura K, Tachi Y, Yotsuji K (2016) Diffusion and adsorption of uranyl ion in clays: molecular dynamics study Prog. Nucl Energy. https://doi.org/10.1016/j.pnucene.2016.03.006

    Article  Google Scholar 

  14. Gładysz-Płaska A, Grabias E, Majdan M (2018) Simultaneous adsorption of uranium(VI) and phosphate on red clay. Prog Nucl Energy. https://doi.org/10.1016/j.pnucene.2017.09.010

    Article  Google Scholar 

  15. Rakhym AB, Seilkhanova GA, Kurmanbayeva TS (2020) Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.05.672

    Article  Google Scholar 

  16. Liu X, Yang S, Gu P, Liu S, Yang G (2021) Adsorption and removal of metal ions by smectites nanoparticles: mechanistic aspects, and impacts of charge location and edge structure. Appl Clay Sci. https://doi.org/10.1016/j.clay.2020.105957

    Article  Google Scholar 

  17. Khalfa L, Sdiri A, Bagane M, Cervera ML (2021) A calcined clay fixed bed adsorption studies for the removal of heavy metals from aqueous solutions J Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.123935

    Article  Google Scholar 

  18. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J Paleolimnol. https://doi.org/10.1023/A:1008119611481

    Article  Google Scholar 

  19. Grekov D, Montavon G, Robinet J-C, Grambow B (2019) Smectite fraction assessment in complex natural clay rocks from interlayer water content determined by thermogravimetric and thermoporometry analysis. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2019.07.076

    Article  PubMed  Google Scholar 

  20. Silva PSC, Máduar MF, Scapin MA, Garcia LHR, Martins JPM (2016) Radiological assessment of pharmaceutical clays. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-015-4404-y

    Article  Google Scholar 

  21. Prandel LV, Saab SC, Brinatti AM, Giarola NFB, Leite WC, Cassari FAM (2014) Mineralogical analysis of clays in hardsetting soil horizons, by X-ray fluorescence and X-ray diffraction using Rietveld method. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2012.12.017

    Article  Google Scholar 

  22. Greenberg RR, Bode P, Fernandes EAN (2011) Neutron activation analysis: A primary method of measurement. Spectrochim Acta Part B. https://doi.org/10.1016/j.sab.2010.12.011

    Article  Google Scholar 

  23. IAEA (1990) TECDOC—564 Practical aspects of operating aneutron analysis laboratory. International Atomic Energy Agency, Vienna

    Google Scholar 

  24. Gilmore G, Hemingway JD (1995) Practical gamma spectrometry. John Wiley, New York

    Google Scholar 

  25. Cutshall NH, Larsen LH, Olsen CR (1983) Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nucl Instruments Methods Phys Res 206:309–312

    Article  CAS  Google Scholar 

  26. Garg N, Skibsted J (2014) Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. J Phys Chem C. https://doi.org/10.1021/jp502529d

    Article  Google Scholar 

  27. Landoulsi O, Megriche A, Calvet R, Espitalier F, Ferreira JMF, Mgaidi A (2013) Effects of heating and acid activation on the structure and surface properties of a kaolinite-illite-smectite clayey mixture. Open Miner Process J. https://doi.org/10.2174/1874841401306010013

    Article  Google Scholar 

  28. Sarikaya Y, Onal M, Baran B, Alemdaroglu T (2000) The effect of thermal treatment on some of the physicochemical properties of a bentonite. Clays Clay Miner 48:557–562

    Article  CAS  Google Scholar 

  29. Moreira MAA, Lorandi R, de Moraes MEB (2008) Caracterização de áreas preferenciais para a instalação de aterros sanitários no município de descalvado (SP) na, escala 1:50000. Rev Bras Cartogr 60(02):177–194

    Google Scholar 

  30. Zatta L (2010) Caulinita e haloisita “in-natura” e ativadas com ácidos minerais como catalisadores heterogêneos para esterificação (m)etílica de ácidos graxos. Universidade Federal do Paraná, Paraná ((in portuguese))

    Google Scholar 

  31. Gardolinski JE, Filho HPM, Wypych F (2003) Comportamento térmico da caulinita hidratada. Quim. Nova https://doi.org/10.1590/s0100-40422003000100007

    Article  Google Scholar 

  32. Bentayeb A, Amouric M, Olives J, Dekayir A, Nadiri A (2003) XRD and HRTEM characterization of pyrophyllite from Morocco and its possible applications. Appl Clay Sci. https://doi.org/10.1016/S0169-1317(03)00066-8

    Article  Google Scholar 

  33. Aragão DM, Arguelho MLPM, Alves JD, Prado CM (2013) Estudo comparativo da adsorção de Pb (II), Cd (II) e Cu (II) em argila natural caulinítica e contendo montmorilonita. Orbital Electron J Chem 5:157–163

    Google Scholar 

  34. Sales PF, Magriotis ZM, Rossi MALS, Tartuci LG, Papini RM, Viana PRM (2013) Study of chemical and thermal treatment of kaolinite and its influence on the removal of contaminants from mining effluents. J Environ Manage. https://doi.org/10.1016/j.jenvman.2013.05.035

    Article  PubMed  Google Scholar 

  35. Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci. https://doi.org/10.1016/S0169-1317(03)00095-4

    Article  Google Scholar 

  36. Brindley GW, Kao CC, Harrison JL, Lipsica M, Raythath R (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner. https://doi.org/10.1346/CCMN.1986.0340303

    Article  Google Scholar 

  37. Zhang J, Yan J, Sheng J (2015) Dry grinding effect on pyrophyllite-quartz natural mixture and its influence on the structural alternation of pyrophyllite. Micron. https://doi.org/10.1016/j.micron.2014.12.005

    Article  PubMed  Google Scholar 

  38. Aja SU (1998) Sorption of the rare earth element, Nd, onto kaolinite at 25 °C Clays. Clay Miner. https://doi.org/10.1346/CCMN.1998.0460112

    Article  Google Scholar 

  39. Marques R, Prudêncio MI, Dias MI, Rocha F (2011) Patterns of rare earth and other trace elements in different size fractions of clays of Campanian-Maastrichtian deposits from the Portuguese western margin (Aveiro and Taveiro Formations). Geochemistry. https://doi.org/10.1016/j.chemer.2011.02.002

  40. Yanfei X, Li H, Zhiqi L, Zongyu F, Liangshi W (2016) Adsorption ability of rare earth elements on clay minerals and its practical performance. J Rare Earths. https://doi.org/10.1016/S1002-0721(16)60060-1

    Article  Google Scholar 

  41. Palmer CA, Lyons PC (1996) Selected elements in major minerals from bituminous coal as determined by INAA: implications for removing environmentally sensitive elements from coal. Int J Coal Geol. https://doi.org/10.1016/S0166-5162(96)00035-3

    Article  Google Scholar 

  42. UNSCEAR (2000) Sources and Effects of Ionizing Radiation. Volume II: Effects. UNSCEAR 2000 Report. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report to the General Assembly, with scientific annexes. United Nations sales publication E.00.IX.4. United Nations, New York

  43. Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V (2011) Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2010.07.020

    Article  PubMed  Google Scholar 

  44. Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) Function of minerals in the natural radioactivity level of Vaigai River sediments Part A Mol Biomol Spectrosc Tamilnadu, India—Spectroscopical approach. Spectrochim Acta. https://doi.org/10.1016/j.saa.2013.08.022

    Article  Google Scholar 

  45. Chandrasekaran A, Ravisankar R, Rajalakshmi A, Eswaran P, Vijayagopal P, Venkatraman B (2015) Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach. Part A Mol Biomol Spectrosc Spectrochim Acta. https://doi.org/10.1016/j.saa.2014.10.075

    Article  Google Scholar 

  46. Bergaya F, Lagaly G, Vayer M (2013) Cation and anion exchange. In: Bergaya F, Lagaly G (eds) Handbook of clay science, 2nd edn. Elsevier Ltd, Amsterdam

    Google Scholar 

  47. Unuabonah EI, Adebowale KO, Olu-Owolabi BI et al (2008) Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: Equilibrium and thermodynamic studies. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2008.02.009

    Article  Google Scholar 

  48. Jiang M, Jin X, Lu X, Chen Z (2010) Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. https://doi.org/10.1016/j.desal.2009.11.005

    Article  Google Scholar 

  49. Suraj G, Iyer CSP, Lalithambika M (1998) Adsorption of cadmium and copper by modified kaolinites. Appl Clay Sci. https://doi.org/10.1016/S0169-1317(98)00043-X

    Article  Google Scholar 

  50. Bhattacharyya KG, Sen GS (2006) Adsorption of chromium(VI) from water by clays. Ind Eng Chem Res. https://doi.org/10.1021/ie060586j

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson Koyaishi Torrecilha.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Sordo Filho, G., Torrecilha, J.K., Scapin, M.A. et al. Characterization and adsorption capacity of Brazilian kaolin. J Radioanal Nucl Chem 329, 61–70 (2021). https://doi.org/10.1007/s10967-021-07674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07674-3

Keywords

Navigation