Skip to main content
Log in

Adsorption of La, Eu and Lu on raw and modified red clay

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Adsorption of La, Eu, and Lu on red clay was studied in an initial concentration range of 10−4–10−3 mol/dm3 and a pH range of 2–10. Among the different forms of red clay: T-clay (thermally modified), R-clay (raw, unmodified), Na-clay (sodium form), H-clay (acid form), and HDTMA-clay (surfactant-modified form), T-clay was found to be the most effective adsorbent of the lanthanides studied. The adsorption/desorption isotherms, i.e. log K d versus log c eq dependencies, had a linear character. Among the investigated lanthanides, Eu was most strongly bound by the clay surface and, therefore, parameters a (slopes of the lines log K d = alog c eq + b) of Eu were the highest compared to those for La and Lu. Desorption isotherms were located above adsorption isotherms, which resulted from chemiadsorption of the investigated lanthanides. Changes in lanthanide adsorption with pH were successfully modelled based on the molar fractions of Ln3+, LnOH2+, LnCO3 +, and Ln(CO3) 2 species in the aqueous phase [Ln—lanthanide(III)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller SE, Heat GR, Gonzalez RD (1982) Effects of temperature on the sorption of lanthanides by montmorillonite. Clay Clay Miner 30:111–122

    Article  CAS  Google Scholar 

  2. Bradbury MH, Baeyens B, Geckeis H, Rabung T (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 2: Surface complexation modelling. Geochim Cosmochim Acta 69(23):5403–5412

    Article  CAS  Google Scholar 

  3. Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66(13):2325–2334

    Article  CAS  Google Scholar 

  4. Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H (2006) Europium retention onto clay minerals from 25 to 150 °C: experimental measurements, spectroscopic features and sorption modelling. Geochim Cosmochim Acta 70:4563–4578

    Article  CAS  Google Scholar 

  5. Galunin E, Alba MD, Santosc MJ, Abrăo T, Vidal M (2011) Examination of competitive lanthanide sorption onto smectites and its significance in the management of radioactive waste. J Hazard Mater 186:1930–1941

    Article  CAS  Google Scholar 

  6. Sheng GD, Shao DD, Fan QH, Xu D, Chen YX, Wang XK (2009) Effect of pH and ionic strength on sorption of Eu(III) on MX-80 bentonite: batch and XAFS study, Radiochim. Acta 97:621–630

    CAS  Google Scholar 

  7. Kulik DA, Aja SU, Sinitsyn VA, Wood SA (2000) Acid–base surface chemistry and sorption of some lanthanides on K1-saturated Marblehead illite: II. A multisite-surface complexation modeling. Geochim Cosmochim Acta 64(2):195–213

    Article  CAS  Google Scholar 

  8. Olin M, Puhakka E, Lehikoinen J, Puukko E, Hakanen M, Lindberg A (2007) Characterisation of kaolinite and adsorption of europium on kaolinite, working report 2007-82. Technical Research Centre of Finland (VTT), University of Helsinki, Geological Survey of Finland

  9. Yu T, Wu WS, Liu ZR, Zhang SW (2012) Sorption of Eu(III) on Ca-bentonite: efect of pH, Ionic Strength and Humic Acid. Res J Chem Environ 16(3):4

    CAS  Google Scholar 

  10. Jun H, Zhi X, Bo H, GuoDong S, ChangLun Ch, JiaXing L, YiXue Ch, XiangKe W (2010) Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Sci China/Chem 53(6):1420–1428

    Google Scholar 

  11. Wenming D, Xiangke W, Xiaoyan B, Aixia W, Jingzhou D, Zuyi T (2001) Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth. Appl Radiat Isotopes 54:603–610

    Article  CAS  Google Scholar 

  12. Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002) Sorption of lanthanides on smectite and kaolinite. Chem Geol 182:57–68

    Article  CAS  Google Scholar 

  13. Coppin F, Castet S, Berger G, Loubet M (2003) Microscopic reversibility of Sm and Yb sorption onto smectite and kaolinite: experimental evidence. Geochim Cosmochim Acta 67(14):2515–2527

    Article  CAS  Google Scholar 

  14. Simpson M.F., Law J.D., (2010), Nuclear fuel reprocessing idaho national laboratory idaho falls, INL/EXT-10-17753, Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

  15. Gładysz-Płaska A, Majdan M, Pikus S, Sternik D (2012) Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA. Chem Eng J 179:140–150

    Article  Google Scholar 

  16. Gajowiak A, Gładysz-Płaska A, Sternik D, Pikus S, Sabah E, Majdan M (2013) Sorption of uranyl ions on organosepiolite. Chem Eng J 219:459–468

    Article  CAS  Google Scholar 

  17. Marzenko Z, Balcerzak M (1998) Spektrofotometryczne metody w analizie nieorganicznej. Wydawnictwo Naukowe PWN SA, Warszawa

    Google Scholar 

  18. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater B133:304–308

    Article  Google Scholar 

  19. Xu D, Zhou X, Wang X (2008) Adsorption and desorption of Ni2+ on Na-montmorillonite: effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Appl Clay Sci 39:133–141

    Article  CAS  Google Scholar 

  20. KTH—Chemistry/Chemical Equilibrium Diagrams. http://www.kemi.kth.se/medusa/

  21. Majdan M, Pikus S, Gajowiak A, Gładysz-Płaska A, Krzyżanowska H, Żuk J, Bujacka M (2010) Characterization of uranium(VI) sorption by organobentonite. Appl Surf Sci 256:5416–5421

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the National Centre of Research and Development of Poland “Technologies Supporting Development of Safe Nuclear Power Engineering”. Agreement No. 168/040-117/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Gładysz-Płaska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gładysz-Płaska, A., Majdan, M. & Grabias, E. Adsorption of La, Eu and Lu on raw and modified red clay. J Radioanal Nucl Chem 301, 33–40 (2014). https://doi.org/10.1007/s10967-014-3111-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3111-4

Keywords

Navigation