Skip to main content
Log in

Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO3) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce3+/Ce4+ oxidation–reduction approach using NaBrO3 and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rajendran J, Balasubramanian G, Thampi PK (2008) Determination of rare earth elements in Indian costal monazite by ICP-AES and ICP-MS analysis and their geochemical significance. Curr Sci 94(10):1296–1302

    CAS  Google Scholar 

  2. Cassidy RM (1988) Determination of rare-earth elements in rocks by liquid chromatography. Chem Geol 67:185–195

    Article  CAS  Google Scholar 

  3. Gioia SMCL, Pimentel MM (2000) The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. An Acad Bras Ciênc. https://doi.org/10.1590/s0001-37652000000200009

    Article  PubMed  Google Scholar 

  4. Fivet V, Quinet P, Biémont É, Jorissen A, Yushchenko AV, Van Eck S (2007) Transition probabilities in singly ionized promethium and the identification of Pm II lines in Przybylski’s star and HR 465. R Astron Soc 5:69. https://doi.org/10.1111/j.1365-2966.2007.12118.x

    Article  CAS  Google Scholar 

  5. Goyal A, Khatri I, Aggarwal S, Singh AK, Mohan M (2016) Calculation of energy levels, lifetimes and radiative data for La XXIX to Sm XXXIV. At Data Nucl Data Tables. https://doi.org/10.1016/j.adt.2015.07.001

    Article  Google Scholar 

  6. Monroy-Guzman F, Salinas EJ (2015) Separation of micro-macrocomponent systems: 149Pm-Nd, 161 Tb-Gd, 166Ho-Dy, and 177Lu-Yb, by extraction chromatography. J Mex Chem Soc 59(2):143–150

    CAS  Google Scholar 

  7. Ekanger LA, Badal LA, Allen MJ (2016) The role of coordination environment and pH in tuning the oxidation rate of europium(II). Chemistry. https://doi.org/10.1002/chem.201604842

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Vries LH, Lodewijk L, Braat AJAT, Krijger GC, Valk GD, Lam MGEH, Borel Rinkes IHM, Vriens MR, de Keizer B (2020) 68Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with 177Lu-PSMA-617 EJNMMI. Resarch. https://doi.org/10.1186/s13550-020-0610-x

    Article  Google Scholar 

  9. Derlin T, Sommerlath Sohns JM, Schmuck S, Henkenberens C, von Klot CAJ, Ross TL, Bengel FM (2020) Influence of short-term dexamethasone on the efficacy of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Prostate. https://doi.org/10.1002/pros.23974

    Article  PubMed  Google Scholar 

  10. Lumetta GJ, Gelis AV, Carter JC, Niver CM, Smoot MR (2014) The actinide-lanthanide separation concept solvent. Extr Ion Exc. https://doi.org/10.1080/07366299.2014.895638

    Article  Google Scholar 

  11. Karslyan Y, Sloop FV Jr, Delmau LH, Moyer BA, Popovs I, Paulenova A, Jansone-Popova S (2019) Sequestration of trivalent americium and lanthanide nitrates with bis-lactam-1,10-phenanthroline ligand in a hydrocarbon solvent. RSC Adv. https://doi.org/10.1039/C9RA06115K

    Article  Google Scholar 

  12. Fernández RG, García Alonso JI (2007) Separation of rare earth elements by anion-exchange chromatography using ethylenediaminetetraacetic acid as mobile phase. J Chromatogr A. https://doi.org/10.1016/j.chroma.2007.12.008

    Article  PubMed  Google Scholar 

  13. Raut N, Huang LS, Aggarwal SK, Lin KC (2005) Mathematical correction for polyatomic isobaric spectral interferences in determination of lanthanides by inductively coupled plasma mass spectrometry. J Chin Chem Soc Taip 52(4):589–597

    Article  CAS  Google Scholar 

  14. Raut N, Huang LS, Aggarwal SK, Lin KC (2003) Determination of lanthanides in rock samples by inductively coupled plasma mass spectrometry using thorium as oxide and hydroxide correction standard. Spectrochim Acta B 58(5):809–822

    Article  Google Scholar 

  15. Leoncini A, Huskens J, Verboom W (2017) Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev. https://doi.org/10.1039/c7cs00574a

    Article  PubMed  Google Scholar 

  16. Sajimol R, Bera S, Sivaraman N, Joseph M (2017) Direct burn-up determination of fast reactor mixed oxide (MOX) fuel by preferential evaporation of interfering elements. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-015-4631-22016

    Article  Google Scholar 

  17. Maity UK, Manoravi P, Sivaraman N, Joseph M, Mudali UK (2018) Fast burn-up measurement in simulated nuclear fuel using ICP-MS. Radiochim Acta. https://doi.org/10.1515/ract-2018-2961

    Article  Google Scholar 

  18. Sivaraman N, Subramaniam S, Srinivasan TG, Vasudeva Rao PR (2002) Burn-up measurements on nuclear reactor fuels using high performance liquid chromatography. J Radioanal Nucl Chem 253(1):35–40

    Article  CAS  Google Scholar 

  19. Ostapenko V, Vasiliev A, Lapshina E, Ermolaev S, Aliev R, Totskiy Y, Zhuikov B, Kalmykov S (2015) Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions. J Radioanal Nucl Chem 306:707–711

    Article  CAS  Google Scholar 

  20. Miranda MG, Russell B, Ivanov P (2018) Measurement of 151Sm in nuclear decomissioning samples by ICP-MS/MS. J Radio Anal Nucl Chem 316:831–838

    Article  CAS  Google Scholar 

  21. Dry DE, Oldham WJ, Sm Bowen (2009) Determination of 151Sm and 147Pm using liquid scintillation tracer methods. J Radioanal Nucl Chem 282:635

    Article  CAS  Google Scholar 

  22. Cawthray JF, Weekes DM, Sivak O, Creagh AL, Ibrahim F, Iafrate M, Haynes CA, Wasan KM, Orvig C (2015) In vivo study and thermodynamic investigation of two lanthanum complexes, La(dpp)3 and La(XT), for the treatment of bone resorption disorders. Chem Sci 6(11):6439–6447

    Article  CAS  Google Scholar 

  23. Castelli DD, Terreno E, Cabella C, Chaabane L, Lanzardo S, Tei L, Visigalli M, Aime S (2009) Evidence for in vivo macrophage mediated tumor uptake of paramagnetic/fluorescent liposomes. NMR Biomed. https://doi.org/10.1002/nbm.1416

    Article  PubMed  Google Scholar 

  24. Bertelsen ER, Jackson JA, Shafer JC (2020) A survey of extraction chromatographic f-element separations developed by E. P. Horwitz Solvent. Extr Ion Exc. https://doi.org/10.1080/07366299.2020.1720958

    Article  Google Scholar 

  25. McAlister DR, Horwitz EP (2007) Characterization of extraction of chromatographic materials containing bis(2-ethyl-1-hexyl)phosphoric acid, 2-ethyl-1-hexyl (2-ethyl-1-hexyl) phosphonic acid, and bis(2,4,4-trimethyl-1-pentyl)phosphinic acid solvent. Extr Ion Exc. https://doi.org/10.1080/07366290701634594

    Article  Google Scholar 

  26. Choppin GR (2002) Covalency in f-element bonds. J Alloys Compd 344(1–2):55–59

    Article  CAS  Google Scholar 

  27. Horwitz EP, Bloomquist CAA (1975) Chemical separations for super-heavy element searches in irradiated uranium targets. J Inorg Nucl Chem 37(2):425–434

    Article  CAS  Google Scholar 

  28. Payne RF, Schulte SM, Douglas M, Friese JI, Farmer OT III, Finn EC (2010) Investigation of gravity lanthanide separation chemistry. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-010-0838-4

    Article  Google Scholar 

  29. Hirahara Y, Chang Q, Miyazaki T, Takahashi T, Kimura JI (2012) Improved Nd chemical separation technique for 143Nd/144Nd analysis in geological samples using packed Ln resin columns. JAMSTEC Rep Res Dev 15:27–33

    Article  Google Scholar 

  30. Arrigo LM, Beck CL, Finn EC, Finch ZS, Gregory SJ, Seiner BN, Snow LA, Metz LA (2014) Optimization of lanthanide separations using Eichrom’s LN resin. American Chemical Society National Meeting. Dallas, TX

  31. Ireland TJ, Tissot FLH, Yokochi R, Dauphas N (2013) Teflon-HPLC: a novel chromatographic system for application to isotope geochemistry and other industries. Chem Geol 357:203–314

    Article  CAS  Google Scholar 

  32. Snow M, Ward J (2019) Fundamental distribution coefficient data and separations using eichrom extraction chromatographic resins. J Chromatogr A 2:6. https://doi.org/10.1016/j.chroma.2019.460833

    Article  CAS  Google Scholar 

  33. Miller JM (2005) Chromatography: concepts and contrasts, 2nd edn. Wiley, Hoboken

    Google Scholar 

  34. Field RJ, Koros E, Noyes RM (1972) Oscillations in chemical systems II Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J Am Chem Soc. https://doi.org/10.1021/ja00780a001

    Article  Google Scholar 

  35. Schnabel C, Münkerab C, Strub E (2017) La–Ce isotope measurements by multicollector-ICPMS. J Anal At Spectrom. https://doi.org/10.1039/c7ja00256d

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zawierucha I, Nowik-Zajac A (2019) Evaluation of permeable sorption barriers for removal of Cd(II) and Zn(II) ions from contaminated groundwater. Water Sci Technol 80(3):448–457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported through the INL Laboratory Directed Research & Development Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. Views and opinions of the authors expressed herein do not necessarily reflect those of the U.S. Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Ward.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, J., Bucher, B., Carney, K. et al. Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography. J Radioanal Nucl Chem 327, 307–316 (2021). https://doi.org/10.1007/s10967-020-07491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07491-0

Keywords

Navigation