Skip to main content

Continuous Ion Chromatography

  • Chapter
  • First Online:
Rare Earth Metals and Minerals Industries
  • 336 Accesses

Abstract

In the late 1940s, lanthanide separations were performed using ion exchange (IX) as part of the Manhattan project (Boyd et al. J Am Chem Soc 69(11): 2818–2829, 1947; Spedding et al. J Am Chem Soc 69(11): 2812–2818, 1947 which led to the development of ion chromatography techniques enabled the separation and production of large quantities of high-purity rare earths Gscheneidner, Rare Earth; The Fraternal Fifteen: Division of Technical Information; U.S. Atomic Energy Commission, New York, 1967; Fritz, J Chromatogr 1039(1–2): 3–12, 2004).

(Lifton, Solvay’s Toll Refining Services Redirect the Downstream Rare Earth Dream, 2014, https://investorintel.com/markets/technology-metals/technology-metals-intel/first-come-first-served/).

In the more than seventy years since IX was first applied for REE separation, IX resins and the equipment used for separations have advanced significantly. The performance of IX resins with regard to stability, kinetics, and capacity has increased markedly with the development of highly uniform, small monosphere polymer materials. The development of continuous IX contactors has greatly simplified the delivery and control of IX and ion chromatographic separations where a single multiport valve can control 20–30 columns enabling multiple separation stages, recycle steps, and reagent recycling. While IX has continued to be used for rare earth production, the technological advances and improvements in the equipment and chemical media have led to a renaissance in the movement toward reestablishing IX as a separation technique for the production of high-purity rare earths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G.E. Boyd, J. Schubert, A.W. Adamson, The exchange adsorption of ions from aqueous solutions by organic zeolites. I. Ion-exchange equilibria. J. Am. Chem. Soc. 69(11), 2818–2829 (1947)

    Article  CAS  Google Scholar 

  2. F.H. Spedding, E.I. Fulmer, T.A. Butler, E.M. Gladrow, M. Gobush, P.E. Porter, J.E. Powell, J.M. Wright, The separation of rare earths by ion exchange. III. Pilot plant scale separations. J. Am. Chem. Soc. 69(11), 2812–2818 (1947)

    Article  CAS  Google Scholar 

  3. K.A. Gscheneidner, Rare Earth; The Fraternal Fifteen: Division of Technical Information (U.S. Atomic Energy Commission, New York, 1967)

    Google Scholar 

  4. J.S. Fritz, Early milestones in the development of ion-exchange chromatography: A personal account. J. Chromatogr. A 1039(1–2), 3–12 (2004)

    Article  CAS  Google Scholar 

  5. J. Lifton, Solvay’s Toll Refining Services Redirect the Downstream Rare Earth Dream (2014). https://investorintel.com/markets/technology-metals/technology-metals-intel/first-come-first-served/

  6. F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 56, 10–28 (2014)

    Article  CAS  Google Scholar 

  7. T.S. Mackey, Recent developments in USA rare earth technology, in New Frontiers in Rare Earth Science and Applications, (Academic Press, 1985), p. 1131

    Chapter  Google Scholar 

  8. S.D. Alexandratos, Ion-exchange resins: A retrospective from industrial and engineering chemistry research. Ind. Eng. Chem. Res. 48(1), 388–398 (2009)

    Article  CAS  Google Scholar 

  9. D.O. Campbell, Rapid Rare Earth Separation by Pressurized Ion Exchange Chromatography. J. Inorg. Nucl. Chem. 35(11), 3911–3919 (1973)

    Article  CAS  Google Scholar 

  10. R. McNeill, E.A. Swinton, D.E. Weiss, Continuous ion exchange. JOM 7(8), 912–921 (1955)

    Article  CAS  Google Scholar 

  11. C.D. Scott, R.D. Spence, W.G. Sisson, Pressurized, annular chromatograph for continuous separations. J. Chromatogr. A 126, 381–400 (1976)

    Article  CAS  Google Scholar 

  12. J.M. Begovich, W.G. Sisson, A rotating annular chromatograph for continuous metal separations and recovery. Resour. Conserv. 9, 219–229 (1982)

    Article  CAS  Google Scholar 

  13. V.T. Taniguchi, A.W. Doty, C.H. Byers, Large-scale chromatographic separations using continuous displacement chromatography (CDC), in Rare Earths, Extraction, Preparation and Applications, ed. by R.G. Bautiste, M.M. Wong, (The Minerals, Metals & Materials Society, 1988)

    Google Scholar 

  14. C.J. Cowan, C. Cox, B.T. Croll, P. Holden, J.B. Joseph, A.J. Rees, R.C. Squires, Development of exchange, a continuous ion exchange process using powdered resins and cross-flow filtration, in Ion Exchange Advances, ed. by M.J. Slater, (Springer, Dordrecht, 1992)

    Google Scholar 

  15. C.H. Byers, D.F. Williams, Efficient recovery of lanthanides by continuous ion exchange. Ind. Eng. Chem. Res. 35(4), 993–998 (1996)

    Article  CAS  Google Scholar 

  16. W.W. Berry, R.A. Schmeda, H.S. Kibler, Advanced Separation Device and Method US4522726 (1985)

    Google Scholar 

  17. F.A. Habashi, Textbook of hydrometallurgy, in Quebec City, Metallurgie Extractive Quebec, 2nd edn., (Distributed by Laval University Bookstore, 1993)

    Google Scholar 

  18. B.K. Ahlgren, R.U. Seneviratne, Recent Advances in the Design and Operation of Continuous Ion Exchange Equipment in the Mining Industry (Proceedings of the 7th International Symposium, Hydrometallurgy 2014 – Volume II, Canadian Institute of Mining, Metallurgy and Petroleum – ISBN: 978-1-926872-23-0, 2014)

    Google Scholar 

  19. D.B. Dreisinger, M.J. Gula, The Ion Exchange Treatment of Copper Electrowinning Bleed Streams Using Diphonix TM Resin (In the Minerals, Metals & Materials Society Annual Meeting, 1995)

    Google Scholar 

  20. http://www.ixsep.com

  21. https://www.calgoncarbon.com/products/isep/

  22. https://www.puritech.be

  23. F. Rochette, Y. De Busscher, Rare Earth and Precious Metals Recovered with CCIX-Continuous Countercurrent Ion Exchange (ALTA 2018 Uranium-REE-Lithium Conference: 14th Annual Uranium Event Proceedings, 2018), p. 301

    Google Scholar 

  24. F.G. Helfferich, Ion Exchange (Courier Corporation, 1995)

    Google Scholar 

  25. J.E. Powell, Non-Metallic Compounds – I, vol 3 (Chapter 22 Separation Chemistry, 1979), pp. 81–109

    Book  Google Scholar 

  26. B. Chen, M. He, H. Zhang, Z. Jiang, B. Hu, Chromatographic Techniques for Rare Earth Elements Analysis. Phys. Sci. Rev. 2(4) (2017)

    Google Scholar 

  27. F.H. Spedding, E.I. Fulmer, J.E. Powell, T.A. Butler, The separation of rare earths by ion exchange. V. Investigations with one-tenth per cent. Citric acid-ammonium citrate solutions 1. J. Am. Chem. Soc. 72(6), 2354–2361 (1950)

    Article  CAS  Google Scholar 

  28. H. Li, Y. Zhao, Patent analysis of the rare earth extracting separation technology. Appl. Mech. Mater. 513–517, 4597–4600 (2014)

    Article  Google Scholar 

  29. W.W. Berry, G.J. Rossiter, Process for Fractionating a Mixture of Rare Earth Metals by Ion Exchange. EP0335538 (1989)

    Google Scholar 

  30. W.W. Berry, T.E. Baroody, Processes for Rare Earths Recovery from Wet-Process Phosphoric Acid. US2015167120 (2015)

    Google Scholar 

  31. N.L. Wang, H. Choi, D. Harvey, Methods for Designing an Efficient Preparative Chromatographic Separation Process (Publication number: US 20200348274, 2018)

    Google Scholar 

  32. N.L. Wang, L. Ling, Ligand-Assisted Chromatography for Metal Ion Separation (Publication Number: US 20200308668, 2019)

    Google Scholar 

  33. N.L. Wang, L. Ling, Ligand-Assisted Chromatography for Metal Ion Separation (Patent Number: US 10597751, 2015)

    Google Scholar 

  34. N.L. Wang, H. Choi, D. Harvey, Preparation of Rare Earth Metals and Other Chemicals from Industrial Waste Coal Ash (Patent Number: US 20190153562, 2018)

    Google Scholar 

  35. Y. Liang, H. Choi, N.L. Wang, Rare Earth Elements Purification Using Ligand-Assisted Displacement Chromatography (August 4, 2016) (The Summer Undergraduate Research Fellowship (SURF) Symposium. Paper 141, 2016)

    Google Scholar 

  36. Y. Ding, D. Harvey, N.H.L. Wang, Two-zone ligand-assisted displacement chromatography for producing high-purity praseodymium, neodymium, and dysprosium with high yield and high productivity from crude mixtures derived from waste magnets. Green Chem. 22(12), 3769–3783 (2020)

    Article  CAS  Google Scholar 

  37. G.V. Ehrlich, G.V. Lisichkin, Sorption in the chemistry of rare earth elements. Russ. J. Gen. Chem. 87(6), 1220–1245 (2017)

    Article  CAS  Google Scholar 

  38. D. Kołodyńska, Z. Hubicki, Investigation of Sorption and Separation of Lanthanides on the Ion Exchangers of Various Types (In Ion Exchange Technologies, 2012). https://doi.org/10.5772/50857

    Book  Google Scholar 

  39. K.L. Ang, D. Li, A. Nikoloski, The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins. Hydrometallurgy 174, 147–155 (2017)

    Article  CAS  Google Scholar 

  40. K.L. Ang, D. Li, A. Nikoloski, The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 2. Anionic and cationic resins. Miner. Eng. 123(2018), 8–15 (2018)

    Article  CAS  Google Scholar 

  41. A.A. Zagorodni, Ion Exchange Materials: Properties and Applications (Elsevier, 2006)

    Google Scholar 

  42. Q. Dezhi, Chapter 6 – Ion-exchange and extraction chromatography separation of rare earth elements, in Hydrometallurgy of Rare Earths, ed. by D. Qi, (Elsevier, 2018)

    Google Scholar 

  43. B.H. Ketelle, G.E. Boyd, The exchange adsorption of ions from aqueous solutions by organic zeolites. IV. The separation of the yttrium group rare earths. J. Am. Chem. Soc 69(11), 2800–2812 (1947)

    Article  CAS  Google Scholar 

  44. A. Rollat, The Rare-Earths Refinery: Is There an Alternative Industrial Solution to Solvent Extraction? (Rare Earths 2016 Sapporo, Japan, 2016)

    Google Scholar 

  45. J.P. Surls, G.R. Choppin, Equilibrium Sorption of Lanthanides, Americium and Curium on Dowex-50 Resin. J. Amer. Chem. Soc. 79(4), 855–859 (1957)

    Article  CAS  Google Scholar 

  46. S.P. Singh, in Chapter 2 – Complexes of the Rare Earths, ed. by S.P. Sinha, (Elsevier, Pergamon: Oxford, NY, 2013)

    Google Scholar 

  47. X. Heres, V. Blet, P. Di Natale, A. Ouaattou, H. Mazouz, D. Dhiba, F. Cuer, Selective Extraction of Rare Earth Elements from Phosphoric Acid by Ion Exchange Resins, vol 8 (Metals, 2018), p. 682

    Google Scholar 

  48. http://wcsecure.weblink.com.au/pdf/NTU/02317302.pdf

  49. https://www.usare.com

  50. D. Van Tonder, M. Kotze, Uranium Recovery from Acid Leach Liquors: IX or SX? (ALTA Uranium Conference, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaw, R., Dreisinger, D. (2024). Continuous Ion Chromatography. In: Murty, Y.V., Alvin, M.A., Lifton, J. (eds) Rare Earth Metals and Minerals Industries. Springer, Cham. https://doi.org/10.1007/978-3-031-31867-2_7

Download citation

Publish with us

Policies and ethics