Skip to main content
Log in

Separation of zirconium and hafnium from early actinides and rare earth elements with eichrom’s pb resin in HCl

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The separation of zirconium and hafnium isotopes from the early actinides and rare earth elements (REE) with Eichrom’s Pb resin has been studied. Batch studies were performed to characterize the behavior of actinium, thorium, zirconium, hafnium, lutetium, and yttrium on Pb resin from HCl solutions (0.001 M to 11 M). The early actinides and REE had no affinity for the resin at any concentration of HCl, but zirconium and hafnium showed a moderate uptake at high concentrations of HCl with a maximum extraction at 11 M HCl. Several column separations were tested, including with only tracer isotopes and with mass. Rapid, simple separations of zirconium from actinium, thorium, protactinium, and the REE with high yields and low elution volumes are presented with applications for tracer isotope production and fission product separations. The resin is less suitable for hafnium separations as hafnium tends to bleed off the resin even at high concentrations of HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Sweify F, Abdel Fattah A, Ali S (2009) Comparative studies on the extraction of protactinium using different kinds of organic extractants. Sep Sci Technol 44(3):753–722

    Article  CAS  Google Scholar 

  2. Radchenko V, Engle J, Wilson J, Maassen JR, Nortier M, Birnbaum E, John K, Fassbender M (2016) Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal. Radiochim Acta 104(5):291–304

    Article  CAS  Google Scholar 

  3. Kolos K, Hennessy A, Scielzo N, Iacob V, Hardy J, Stoyer M, Tonchev A, Ong W, Burkey M, Champine B, Clark J, Copp K, Gallant A, Norman E, Orford R, Park H, Rohrer J, Santiago-Gonzalez D, Savard G, Shaka A, Wang B, Zhu S (2021) New approach to precisely measure gamma-ray intensities for long-lived fission products, with results for the decay of 95Zr. Nucl Instrum Method Phys ResSect A: Accel, Spectrom, Detect Assoc Equip 1000:165240

    Article  CAS  Google Scholar 

  4. Tang Y, Li S, Yang Y, Chen W, Wei H, Wang G, Yang J, Liao J, Luo S, Liu N (2016) A simple and convenient method for production of 89Zr with high purity. Appl Radiat Isot 118:326–330

    Article  CAS  Google Scholar 

  5. Meijs W, Herscheid J, Haisma H, Wijbrandts R, Van Langevelde F, Van Leuffen P, Mooy R, Pinedo H (1994) Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter. Appl Radiat Isot 45(12):1143–1147

    Article  CAS  Google Scholar 

  6. Deri M, Zeglis B, Francesconi L, Lewis J (2013) PET imaging with 89Zr: From radiochemistry to the clinic. Nucl Med Biol 40(1):3–14

    Article  CAS  Google Scholar 

  7. O’Hara M, Murray N, Carter J, Kellogg C, Link J (2018) Hydroxamate column-based purification of zirconium-89 (89Zr) using an automated fluidic platform. Appl Radiat Isot 132:85–94

    Article  Google Scholar 

  8. Kandil S, Scholten B, Saleh Z, Youssef A, Qaim S, Coenen H (2007) A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J Radioanal Nucl Chem 274(1):45–52

    Article  CAS  Google Scholar 

  9. Carlson J, Carpenter MP, Casten R, Elster C, Fallon P, Gade A, Gross C, Hagen G, Hayes AC, Higinbotham DW, Howell CR, Horowitz CJ, Jones KL, Kondev FG, Lapi S, Macchiavelli A, McCutchen EA, Natowitz J, Nazarewicz W, Papenbrock T, Reddy S, Riley MA, Savage MJ, Savard G, Sherrill BM, Sobotka LG, Stoyer MA, Tsang MB, Vetter K, Wiedenhoever I, Wuosmaa AH, Yennello S (2017) White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics. Prog Part Nucl Phys 94:68–124

    Article  Google Scholar 

  10. Abel EP, Avilov M, Ayres V, Birnbaum E, Bollen G, Bonito G, Bredeweg T, Clause H, Couture A, DeVore J, Dietrich M, Ellison P, Engle J, Ferrieri R, Fitzsimmons J, Friedman M, Georgobiani D, Graves S, Greene J, Lapi S, Loveless CS, Mastren T, Martinez-Gomez C, McGuinness S, Mittig W, Morrissey D, Peaslee G, Pellemoine F, Robertson JD, Scielzo N, Scott M, Severin G, Shaughnessy D, Shusterman J, Singh J, Stoyer M, Sutherlin L, Visser A, Wilkinson J (2019) Isotope harvesting at FRIB: additional opportunities for scientific discovery. J. Phys. G: Nucl. Part. Phys. 46:100501

    Article  CAS  Google Scholar 

  11. Shusterman J, Scielzo N, Thomas K, Norman E, Lapi S, Loveless CS, Peters N, Robertson J, Shaughnessy D, Tonchev A (2019) The surprisingly large neutron capture cross-section of 88Zr. Nature 565:328–330

    Article  CAS  Google Scholar 

  12. Siiskonen T, Huikari J, Haavisto T, Bergman J, Heselius S, Lill J, Lönnroth T, Peräjärvi K, Varttia V (2009) Excitation functions for proton-induced reactions on natural hafnium: production of 177Lu for medical use. Nucl Instrum Methods Phys Res, Sect B 267:21–22

    Article  Google Scholar 

  13. Kazakov A, Belyshev S, Ekatova T, Khankin V, Kuznetsov A, Aliev R (2018) Production of 177Lu by hafnium irradiation using 55-MeV bremsstrahlung photons. J Radioanal Nucl Chem 317:1469–1476

    Article  CAS  Google Scholar 

  14. Steinberg EP (1960) The Radiochemistry of Zirconium and Hafnium. Argonne National Laboratory

    Google Scholar 

  15. Kluge E, Lieser K (1980) Separation of thorium, protactinium and uranium by ion exchange and extraction. Radiochim Acta 27:161–171

    Article  CAS  Google Scholar 

  16. Horwitz E, Dietz M, Rhoads S, Felinto C, Gale N, Houghton J (1994) A lead-selective extraction chromatographic resin and its application to the isolation of lead from geological samples. Anal Chim Acta 292:263–273

    Article  CAS  Google Scholar 

  17. Sudowe R, Calvert MG, Dullmann CE, Farina LM, Folden CMI, Gregorich KE, Gallaher SEH, Hoffman DC, Nelson SL, Phillips DC, Schwantes JM, Wilson RE, Zielinski PM, Nitsche H (2006) Extraction of short-lived zirconium and hafnium isotopes using crown ethers: A model system for the study of rutherfordium. Radiochim Acta 94(3):123–129

    Article  CAS  Google Scholar 

  18. Bennett M (2011) Extraction chromatographic studies of rutherfordium and dubnium homologs. UNLV Theses, Dissertations, Professional Papers, and Capstone, Las Vegas, NV

  19. National Nuclear Data Center (2019) Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat2/indx_dec.jsp. Accessed 14 October 2020

  20. Zielinska B, Bilewicz A (2004) The hydrolysis of actinium. J Radioanly Nucl Chem 261(1):195–198

    Article  CAS  Google Scholar 

  21. Saeger VW, Spedding FH (1960) Some physical properties of rare-earth chlorides in aqueous solution. Ames Laboratory Technical Reports

    Book  Google Scholar 

  22. Hyde E (1960) The Radiochemistry of Thorium. Lawrence Radiation Laboratory

    Google Scholar 

  23. Wang L, Lee H, Lee M (2013) Solvent Extraction of zirconium and hafnium from hydrochloric acid solutions using acidic organophosphorus extractants and their mixtures with TOPO. Mater Trans 54(8):1460–1466

    Article  CAS  Google Scholar 

  24. Johnson J, Kraus K (1956) Hydrolytic behavior of metal ions. VI. ultracentrifugation of zirconium (IV) and Hafnium (IV); effect of acidity on the degree of polymerization. J Am Chem Soc 78(16):3937–3943

    Article  CAS  Google Scholar 

  25. Horwitz E, Dietz M, Chiarizia R, Diamond H, Essling A, Graczyk D (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37

    Article  CAS  Google Scholar 

  26. Horwitz E, Chiarizia R, Dietz M (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336

    Article  CAS  Google Scholar 

  27. Horwitz E, Bloomquist C (1972) The preparation, performance and factors affecting band spreading of high efficiency extraction chromatographic columns for actinide separations. J Inorg Nucl Chem 34:3851–3871

    Article  CAS  Google Scholar 

  28. Haba H, Tsukada K, Asai M, Goto S, Toyoshima A, Nishinaka I, Akiyama K, Hirata M, Ichikawa S, Nagame Y, Shoji Y, Shigekawa M, Koike T, Iwasaki M, Shinohara A, Kaneko T, Maruyama T, Ono S, Kudo H, Oura Y, Sueki K, Nakahara H, Sakama M, Yokoyama A, Kratz JV, Schädel M, Brüchle W (2002) Anion-exchange behavior of Rf in HCl and HNO3 solutions. J Nucl Radiochem Sci 3(1):143–146

    Article  Google Scholar 

  29. Junk P (2001) Structural aspects of oxonium ion/crown ether complexes. Rev Inorg Chem 21(1–2):93–124

    Article  CAS  Google Scholar 

  30. Stevenson P, Nervik W (1961) The Radiochemistry of the Rare Earths, Scandium Yttrium and Actinium. Lawrence Radiation Laboratory

    Book  Google Scholar 

  31. Shahani C, Mathew K, Rao C, Ramaniah M (1968) Chemistry of actinium I. Stability constants of chloride, bromide nitrate and sulphate complexes. Radiochimica Acta 10(3–4):165–167

    Article  CAS  Google Scholar 

  32. Ferrier M, Batista E, Berg J, Birnbaum E, Cross J, Engle J, La Pierre H, Kozimer S, Pacheco J, Stein B, Steiber S, Wilson J (2016) Spectroscopic and computational investigation of actinium coordination chemistry. Nat Commun 7:12312

    Article  CAS  Google Scholar 

  33. Amaral J, Morais C (2020) Equilibrium of zirconium and hafnium in the process of extraction with TBP in nitric medium–Influence in the Zr/Hf separation. Min Eng 146(15):106138

    Article  CAS  Google Scholar 

  34. Kirby H (1959) The Radiochemistry of Protactinium. The National Academies Press

    Google Scholar 

  35. Takagi J, Shimojima H (1965) Studies on protactinium (V) in sulphuric acid solution—I: Centrifugation study. J Inorg Nucl Chem 27(2):405–409

    Article  CAS  Google Scholar 

  36. Kmak KN, Shaughnessy DA, Vujic J (2021) Batch and column studies of radium, actinium, thorium and protactinium on CL resin in nitric acid, hydrochloric acid and hydrofluoric acid. J Radioanal Nucl Chem 328:225–233

    Article  CAS  Google Scholar 

  37. McAlister D, Kurosaki H, Happel S (2020) Horwitz EP (2020) development of extraction chromatography resins for metal ion separations in analytical radiochemistry. Bunseki 2:44–50

    Google Scholar 

  38. Fonari MS, Simonov YA, Wang WJ, Tang SW, Ganin EV, Gelmboldt VO, Chernaya TS, Alekseeva OA, Furmanova NG (2007) Structure of oxonium hexafluoroniobate and hexafluorotantalate complexes with crown ethers of different dimensionality. Polyhedron 26(18):5193–5202

    Article  CAS  Google Scholar 

  39. Kmak K (2021) Investigation of the 230Th(p,2n)229Pa Reaction as a Route to 225Ac. UC Berkeley. ProQuest ID: Kmak_berkeley_0028E_20374. Merritt ID: ark:/13030/m50w 4m1r. Retrieved from https://escholarship.org/uc/item/31t5t4rr. Accessed 31 August 2021

Download references

Acknowledgements

This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly N. Kmak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kmak, K.N., Despotopulos, J.D. & Scielzo, N.D. Separation of zirconium and hafnium from early actinides and rare earth elements with eichrom’s pb resin in HCl. J Radioanal Nucl Chem 330, 1027–1036 (2021). https://doi.org/10.1007/s10967-021-07990-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07990-8

Keywords

Navigation