Skip to main content
Log in

Efficient separation of uranium and lanthanides based on high-performance ion exchange chromatography

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study presents an efficient method for the sequential separation of lanthanides and uranium using a high-performance ion exchange chromatographic column. The used SCX column provides both electrostatic and hydrophobic interactions for the retention and separation of lanthanides and uranyl. Dual gradient elution (pH and α-hydroxyisobutyric acid concentration) enables continuous elution of uranyl before and after the elution of all the lanthanides. The proposed single-column separation protocol was validated by the effective separation of simulated spent nuclear fuel, which can be used to measure burn-up rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sajimol R, Bera S, Sivaraman N, Joseph M (2017) Direct burn-up determination of fast reactor mixed oxide (MOX) fuel by preferential evaporation of interfering elements. J Radioanal Nucl Chem 311:1593–1603. https://doi.org/10.1007/s10967-016-5152-3

    Article  CAS  Google Scholar 

  2. Ramaniah MV (1982) Analytical chemistry of fast reactor fuels - a review. Pure Appl Chem 54:889–908. https://doi.org/10.1351/pac198254040889

    Article  CAS  Google Scholar 

  3. Kihsoo J, Jung-Suck K, Jong-Gu K, Sun-Ho H, Young-Shin J, Won-Ho K (2005) Separation of burnup monitors in spent nuclear fuel samples by liquid chromatography. Bull Korean Chem Soc 26:569–574

    Article  Google Scholar 

  4. Ansari SA, Asif M, Rashid T, Qasim KG (2007) Burnup studies of spent fuels of varying types and enrichment. Ann Nucl Energy 34:641–651. https://doi.org/10.1016/j.anucene.2007.02.010

    Article  CAS  Google Scholar 

  5. Natsume H, Umezawa H, Okazaki S, Suzuki T, Sonobe T, Usuda S (1972) Sequential ion-exchange separation of heavy elements and selected fission products for burnup measurement. J Nucl Sci Technol 9:737–742. https://doi.org/10.1080/18811248.1972.9734935

    Article  CAS  Google Scholar 

  6. Kumar PG, Jaison PM, Telmore V, Aggarwal PSK, S, (2013) Determination of lanthanides, thorium, uranium and plutonium in irradiated (Th, Pu)O2 by liquid chromatography using α-hydroxyiso butyric acid (α-HIBA). Int J Anal Mass Spectrom Chromatogr 01:72–80. https://doi.org/10.4236/ijamsc.2013.11009

    Article  Google Scholar 

  7. Rein JE (1972) Status of burn-up measurement methodology, in: Analytical Methods in the Nuclear Fuel Cycle. IAEA-SM-149, IAEA, Vienna, pp 449.

  8. Kumar SJ, Telmore V, Shah R, Bhushan KS, Paul S, Kumar P, Rao RM, Jaison P (2017) Determination of burn-up of irradiated nuclear fuels using mass spectrometry. In: Proceedings of the Thirty First ISMAS Symposium on Mass Spectrometry. Bhabha Atomic Research Centre, India, pp 42–44.

  9. Joseph M, Manoravi P, Sivaraman N (2017) Direct burn-up measurements. In: Proceedings of the Thirty First ISMAS Symposium on Mass Spectrometry. Bhabha Atomic Research Centre, India, pp 35–37.

  10. Röllin S, Kopatjtic Z, Wernli B, Magyar B (1996) Determination of lanthanides and actinides in uranium materials by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection. J Chromatogr 739:139–149. https://doi.org/10.1016/0021-9673(96)00037-4

    Article  Google Scholar 

  11. Liu Y, Shao X, Bu W, Qin Z, Ni Y, Wu F, Yang C, Wang X (2022) Radioanalytical chemistry for nuclear forensics in China: Progress and future perspective. Chin Chem Lett 33:3384–3394. https://doi.org/10.1016/j.cclet.2022.03.016

    Article  CAS  Google Scholar 

  12. Xiao J, Li B, Qiang R, Qiu H, Chen J (2022) Highly selective adsorption of rare earth elements by honeycomb-shaped covalent organic frameworks synthesized in deep eutectic solvents. Environ Res 214:113977. https://doi.org/10.1016/j.envres.2022.113977

    Article  CAS  PubMed  Google Scholar 

  13. Wanna NN, Van Hoecke K, Dobney A, Vasile M, Cardinaels T, Vanhaecke F (2020) Determination of the lanthanides, uranium and plutonium by means of on-line high-pressure ion chromatography coupled with sector field inductively coupled plasma-mass spectrometry to characterize nuclear samples. J Chromatogr A 1617:460839. https://doi.org/10.1016/j.chroma.2019.460839

    Article  CAS  PubMed  Google Scholar 

  14. Tachimori S, Morita Y (2009) Overview of solvent extraction chemistry of Reprocessing. In: Moyer BA (ed) Ion exchange and Solvent extraction: A serried of advances. CRC Press Inc., Boca Raton, pp 15–17

    Google Scholar 

  15. Zhu Z, Pranolo Y, Cheng CY (2015) Separation of uranium and thorium from rare earths for rare earth production – a review. Miner Eng 77:185–196. https://doi.org/10.1016/j.mineng.2015.03.012

    Article  CAS  Google Scholar 

  16. Khayambashi A, Chen L, Dong X, Li K, Wang Z, He L, Annam S, Chen L, Wang Y, Sheridan MV, Xu C, Wang S (2022) Efficient separation between trivalent americium and lanthanides enabled by a phenanthroline-based polymeric organic framework. Chin Chem Lett 33:3429–3434. https://doi.org/10.1016/j.cclet.2022.02.011

    Article  CAS  Google Scholar 

  17. Xiao W, Pan D, Niu Z, Fan Y, Wu S, Wu W (2022) Opportunities and challenges of high-pressure ion exchange chromatography for nuclide separation and enrichment. Chin Chem Lett 33:3413–3421. https://doi.org/10.1016/j.cclet.2022.03.017

    Article  CAS  Google Scholar 

  18. Parrish RJ, Liu X, Winston A, Harp JM, Aitkaliyeva A (2019) Radial microstructural evolution in low burnup fast reactor MOX fuel. J Nucl Mater 523:182–188. https://doi.org/10.1016/j.jnucmat.2019.06.009

    Article  CAS  Google Scholar 

  19. Ramzan M, Kifle D, Wibetoe G (2017) A rapid impregnation method for loading desired amounts of extractant on prepacked reversed-phase columns for high performance liquid chromatographic separation of metal ions. J Chromatogr A 1500:76–83. https://doi.org/10.1016/j.chroma.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  20. Bradley VC, Manard BT, Roach BD, Metzger SC, Rogers KT, Ticknor BW, Wysor SK, Brockman JD, Hexel CR (2020) Rare earth element determination in uranium ore concentrates using online and offline chromatography coupled to ICP-MS. Minerals. https://doi.org/10.3390/min10010055

    Article  Google Scholar 

  21. Raju ChS, Subramanian MS, Sivaraman N, Srinivasan TG, Vasudeva Rao PR (2007) Retention studies on uranium, thorium and lanthanides with amide modified reverse phase support and its applications. J Chromatogr A 1156:340–347. https://doi.org/10.1016/j.chroma.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  22. Hao F, Haddad PR, Jackson PE, Carnevale J (1993) Studies on the retention behaviour of α-hydroxyisobutyric acid complexes of thorium(IV) and uranyl ion in reversed-phase high-performance liquid chromatography. J Chromatogr 640:187–194. https://doi.org/10.1016/0021-9673(93)80181-7

    Article  CAS  Google Scholar 

  23. Elchuk S, Burns KI, Cassidy RM, Lucy CA (1991) Reversed-phase separation of transition metals, lanthanides and actinides by elution with mandelic acid. J Chromatogr 558:197–207. https://doi.org/10.1016/0021-9673(91)80125-Z

    Article  CAS  Google Scholar 

  24. Betti M (1997) Use of ion chromatography for the determination of fission products and actinides in nuclear applications. J Chromatogr 789:369–379. https://doi.org/10.1016/S0021-9673(97)00784-X

    Article  CAS  Google Scholar 

  25. Hao F, Paull B, Haddad PR (1996) Retention behaviour of thorium(IV) and uranyl on a reversed-phase column with glycolate and mandelate as eluents. J Chromatogr 739:151–161. https://doi.org/10.1016/0021-9673(96)81462-2

    Article  CAS  Google Scholar 

  26. Lucy CA, Gureli L, Elchuk S (1993) Determination of trace lanthanide impurities in nuclear grade uranium by coupled-column liquid chromatography. Anal Chem 65:3320–3325. https://doi.org/10.1021/ac00070a025

    Article  CAS  Google Scholar 

  27. Datta A, Sivaraman N, Srinivasan TG, Rao PRV (2010) Rapid separation of lanthanides and actinides on small particle based reverse phase supports. Radiochim Acta 98:277–285. https://doi.org/10.1524/ract.2010.1715

    Article  CAS  Google Scholar 

  28. Raut NM, Jaison PG, Aggarwal SK (2004) Separation and determination of lanthanides, thorium and uranium using a dual gradient in reversed-phase liquid chromatography. J Chromatogr A 1052:131–136. https://doi.org/10.1016/j.chroma.2004.08.054

    Article  CAS  PubMed  Google Scholar 

  29. Long Z, Guo Z, Xue X, Zhang X, Nordahl L, Liang X (2013) Selective separation and purification of highly polar basic compounds using a silica-based strong cation exchange stationary phase. Anal Chim Acta 804:304–312. https://doi.org/10.1016/j.aca.2013.10.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Funding of Dalian Institute of Chemical Physics (DICP I202113) and Jiangxi Provincial Natural Science Foundation (20232BAB213052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Banghong Liang or Zhimou Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Cai, T., Feng, J. et al. Efficient separation of uranium and lanthanides based on high-performance ion exchange chromatography. J Radioanal Nucl Chem 333, 281–288 (2024). https://doi.org/10.1007/s10967-023-09249-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09249-w

Keywords

Navigation