Skip to main content
Log in

Fission isotope release kinetics and its sorption on insitu formed MnO2 during the dissolution of fission isotope substituted chromium oxide in HMnO4

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Fission isotopes contribute approximately 10% of the total radioactivity removed from the heat transport circuit of reactor systems during the chemical decontamination process. Simulated corrosion products (SCP) (CrFeO3 and MxCrFe1−xO3) and with fission isotope substituted in SCP [MxNiCrFe1−xO4 (M = La, Ce and Zr; x ≤ 0.05)] were synthesised and its dissolution behavior were studied in permanganate medium. Fission isotope metal ion substitution in SCP showed enhanced ‘Cr’ dissolution rates during the permanganate treatment. Among the fission isotope (La, Ce and Zr) substituted oxide dissolution studies, ‘La’ release was more compare to ‘Ce’ and ‘Zr’. The release behavior of fission products studies showed that dissolved lanthanum is getting sorbed onto the insitu formed MnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen GC, Jutson JA, Tempest PA (1988) Characterization of nickel–chromium–iron spinel-type oxides. J Nucl Mater 158:96–107. https://doi.org/10.1016/0022-3115(88)90159-6

    Article  CAS  Google Scholar 

  2. Swan T, Segal MG, Williams WJ (1987) LOMI decontamination reagents and related oxidation process. EPRI, Calif, USA

    Google Scholar 

  3. Venkateswaran G (2000) Metal ion passivation and control of radiation field build-up. In: Venkateswaran G (ed) National symposium on water steam chemistry in nuclear power plants and industry units. BARC, Mumbai, India, pp 22–33

  4. Comley GCW (1985) The significance of corrosion products in water reactor coolant circuits. Prog Nucl Energy 16:41–72. https://doi.org/10.1016/0149-1970(85)90005-8

    Article  CAS  Google Scholar 

  5. Velmurugan S, Rufus AL, Sathyaseelan VS et al (2011) Experience with dilute chemical decontamination in indian pressurized heavy water reactors. Energy Procedia 7:645–649. https://doi.org/10.1016/j.egypro.2011.06.086

    Article  CAS  Google Scholar 

  6. Merz ER (2003) Handbook of radioactive contamination and decontamination. Nucl Eng Des. https://doi.org/10.1016/0029-5493(93)90232-x

    Article  Google Scholar 

  7. Manjanna J, Venkateswaran G, Sherigara BS, Nayak PV (2002) Synthesis and dissolution of chromium substituted magnetites in V(II)-EDTA formulation. Indian J Chem Technol 9:60–67

    CAS  Google Scholar 

  8. Manjanna J, Venkateswaran G (2002) Effect of oxidative pretreatment for the dissolution of Cr-substituted hematites/magnetites. Ind Eng Chem Res 41:3053–3063. https://doi.org/10.1021/ie010344d

    Article  CAS  Google Scholar 

  9. Tripathi VS, Manjanna J, Venkateswaran G et al (2004) Electrolytic preparation of vanadium(II) formate in pilot-plant scale using stainless steel mesh electrodes: dissolution of α-Fe2O3/Fe1.6Cr0.4O3 in an aqueous VII-NTA complex. Ind Eng Chem Res. https://doi.org/10.1021/ie0400292

    Article  Google Scholar 

  10. Mali A, Ataie A (2005) Structural characterization of nano-crystalline BaFe12O 19 powders synthesized by sol–gel combustion route. Scr Mater. https://doi.org/10.1016/j.scriptamat.2005.06.037

    Article  Google Scholar 

  11. Vadivelu B, Palogi C, Madapusi SP et al (2017) Dissolution of chromite in oxidizing media and sorption of dissolved metal ion onto in situ formed manganese dioxide. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5626-y

    Article  Google Scholar 

  12. Hasany SM, Chaudhary MH (1984) Adsorption behaviour of microamounts of cesium on manganese dioxide. J Radioanal Nucl Chem Artic. https://doi.org/10.1007/BF02036963

    Article  Google Scholar 

  13. Valsala TP, Joseph A, Sonar NL et al (2010) Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2010.07.017

    Article  Google Scholar 

  14. Bhagyashree K, Kar A, Kasar S et al (2014) Sorption of americium from low-level liquid wastes by nanocrystalline MnO2. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-013-2895-y

    Article  Google Scholar 

  15. Le NC, Van Phuc D (2015) Sorption of lead (II), cobalt (II) and copper (II) ions from aqueous solutions by γ-MnO2 nanostructure. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/6/2/025014

    Article  Google Scholar 

  16. Sutka A, Mezinskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6(2):128–141

    Article  Google Scholar 

  17. Leonard M (2004) Vogel’s textbook of quantitative chemical analysis. 5th edn. Endeavour. https://doi.org/10.1016/0160-9327(90)90087-8

    Article  Google Scholar 

  18. Segal MG, Williams WJ (1986) Kinetics of metal oxide dissolution. Oxidative dissolution of chromium(III) oxide by potassium permanganate. J Chem Soc Faraday Trans Phys Chem Condens Phases 82:3245. https://doi.org/10.1039/f19868203245

    Article  CAS  Google Scholar 

  19. Christoffersen J, Christoffersen MR (1976) The kinetics of dissolution of calcium sulphate dihydrate in water. J Cryst Growth. https://doi.org/10.1016/0022-0248(76)90247-5

    Article  Google Scholar 

  20. Ahmad I, Kousar R, Niazi B (2013) Structural and electrical properties of lanthanum substituted spinel ferrites. Mater Chem Phys 92(2):310–321

    Google Scholar 

  21. Sorescu M, Diamandescu L, Tomescu A, Krupa S (2009) Synthesis and sensing properties of zirconium-doped hematite nanoparticles. Phys B Condens Matter 404:2159–2165. https://doi.org/10.1016/j.physb.2009.04.006

    Article  CAS  Google Scholar 

  22. Garnier P, Joseph V, Krachewski R (2013) Lanthanum interaction with surface preparations. ECS Trans 58:119–125. https://doi.org/10.1149/05806.0119ecst

    Article  CAS  Google Scholar 

  23. Fendorf S, Fendorf M (1996) Sorption mechanisms of lanthanum on oxide minerals. Clays Clay Miner 44:220–227. https://doi.org/10.1346/CCMN.1996.0440207

    Article  CAS  Google Scholar 

  24. Abellan P, Moser TH, Lucas IT et al (2017) The formation of cerium(III) hydroxide nanoparticles by a radiation mediated increase in local pH. RSC Adv 7:3831–3837. https://doi.org/10.1039/C6RA27066B

    Article  CAS  Google Scholar 

  25. Tamilmani S, Lowalekar V, Raghavan S, Small R (2005) Dissolution characteristics of ceria in ascorbic acid solutions with implications to cleaning. Solid State Phenom 103–104:283–286. https://doi.org/10.4028/www.scientific.net/SSP.103-104.283

    Article  Google Scholar 

  26. Brookins DG (1988) Zirconium. Eh-pH diagrams for geochemistry. Springer, Berlin, pp 116–117

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chandramohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, V., Chandramohan, P., Velmurugan, S. et al. Fission isotope release kinetics and its sorption on insitu formed MnO2 during the dissolution of fission isotope substituted chromium oxide in HMnO4. J Radioanal Nucl Chem 324, 791–801 (2020). https://doi.org/10.1007/s10967-020-07094-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07094-9

Keywords

Navigation