Skip to main content
Log in

Sorption of americium from low-level liquid wastes by nanocrystalline MnO2

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline MnO2, synthesized by alcoholic hydrolysis of KMnO4, has been studied as a sorbent for removal of americium from low level liquid waste solutions. The synthesized MnO2 was found to have BET surface area of 230 m2 g−1. Am(III) was found to be sorbed by MnO2 quantitatively within 15 min at pH 5. The sorption was found to be more than 90 % at as low a pH as 1.2 and reached to near 100 % at all pH values above pH 3.0 There was no effect of ionic strength (0.01–1.0 M NaCl, CaCl2) on the sorption suggesting the sorption following inner sphere complexation mechanism at all the pH values. Adsorption isotherm studies were carried out using Eu(III) as a chemical analogue of Am(III). These studies showed the isotherm data to follow Langmuir adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wong KM, Brown GS, Noshkin VE (1978) A rapid procedure for plutonium separation in large volumes of fresh and saline water by manganese dioxide coprecipitation. J Radioanal Nucl Chem 42:7–15

    Article  CAS  Google Scholar 

  2. Crespo MT, Los Arcos JM, Granados CE, Aceña ML (1989) On the concentration and determination of plutonium in natural waters by adsorption on MnO2 filters. J Radioanal Nucl Chem 130:99–110

    Article  CAS  Google Scholar 

  3. Hashimoto T, Satoh K, Aoyagi M (1985) Simple collection and direct alpha-spectrometric determination of 214Pb and 214Bi in natural water. J Radioanal Nucl Chem 92:407–414

    Google Scholar 

  4. Mann DR, Surprenant LD, Casso SA (1984) In situ chemisorption of transuranics from seawater. Nucl Instrum Methods Phys Res A 223:235–238

    Article  CAS  Google Scholar 

  5. Crespo MT, Gascon JL, Aceña ML (1992) Procedures for the assay of alpha-particle emitters in water samples. Int J Rad Appl Instrum A 43:19–28

    Article  CAS  Google Scholar 

  6. Crespo MT, Aceña ML, Galán MP (1992) Influence of MnO2 on the oxidation states of plutonium. J Radioanal Nucl Chem 166:299–308

    Google Scholar 

  7. Koulouris G, Slowikowski B, Pilviö R, Bostrom T, Bickel M (2000) Pre-concentration of actinoids from waters: a comparison of various sorbents. Appl Radiat Isotopes 53:279–287

    Article  CAS  Google Scholar 

  8. Varga Z (2007) Preparation and characterization of manganese dioxide impregnated resin for radionuclide pre-concentration. Appl Radiat Isotopes 65:1095–1100

    Article  CAS  Google Scholar 

  9. Colley S, Thomson J (1994) Particulate/solution analysis of 226Ra, 230Th and 210Pb in sea water sampled by in situ large volume filtration and sorption by manganese oxyhydroxide. Sci Total Environ 155:273–283

    Article  CAS  Google Scholar 

  10. Parthasarathy R, Kayasth S, Verma R, Mathur PK, Annapurna P, Anil Kumar S (2000) Determination of 231Pa in monazite and other streams of the thorium production cycle. J Radioanal Nucl Chem 246:239–242

    Google Scholar 

  11. Zaman MI, Mustafa S, Khan S, Xing B (2009) Effect of phosphate complexation on Cd2+ sorption by manganese dioxide (β-MnO2). J Colloid Interface Sci 330:9–19

    Article  CAS  Google Scholar 

  12. Stepniewska Z, Bucior K, Bennicelli RP (2004) The effects of MnO2 on sorption and oxidation of Cr(III) by soils. Geoderma 122:291–296

    Article  CAS  Google Scholar 

  13. Thanh DN, Singh M, Ulbrich P, Strnadova N, Štěpánek F (2011) Perlite incorporating γ-Fe2O3 and α-MnO2 nanomaterials: preparation and evaluation of a new adsorbent for As(V) removal. Sep Purif Technol 82:93–101

    Article  Google Scholar 

  14. Zhang T, Sun DD (2013) Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration. Chem Eng J 225:271–279

    Google Scholar 

  15. Zhao D, Yang X, Zhang H, Chen C, Wang X (2010) Effect of environmental conditions on Pb(II) adsorption on β-MnO2. Chem Eng J 164:49–55

    Google Scholar 

  16. Kanungo SB, Parida KM (1984) Adsorption of Cu2+ on various crystalline modifications of MnO2 at 300°K. J Colloid Interface Sci 98:245–251

    Article  CAS  Google Scholar 

  17. Ohta A, Kawabe I (2001) REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2. Geochim Cosmochim Acta 65:695–703

    Google Scholar 

  18. Fairhurst AJ, Warwick P, Richardson S (1995) The influence of humic acid on the adsorption of europium onto inorganic colloids as a function of pH. Colloids Surf A 99:187–199

    Article  CAS  Google Scholar 

  19. Bhagyashree K, Mishra RK, Shukla R, Kasar S, Kar A, Kumar S, Kumar S, Kaushik CP, Tyagi AK, Tomar BS (2013) Sorption of Plutonum from low level liquid waste using nano MnO2. J Radioanalyt Nucl Chem 295:1561–1566

    Article  CAS  Google Scholar 

  20. Kumar S, Pente AS, Bajpai RK, Kaushik CP, Tomar BS (2013) Americium sorption on smectite rich natural clay from granitic ground water. Appl Geochem 35:28–34

    Article  CAS  Google Scholar 

  21. Basak B, Malati MA, Gray MJ (1978) A radiochemical study of the kinetics of exchange between manganese oxides and some cations in solution. J Radioanal Nucl Chem 42:35–43

    Article  CAS  Google Scholar 

  22. Ho YS, Mckay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans IChem E 76 B:332–340

    Article  Google Scholar 

  23. Fan QH, Wu WS, Song XP, Xu JZ, Hu J, Niu ZW (2008) Effect of humic acid, fulvic acid and temperature on the sorption-desorption of Th(IV) on attapulgite. Radiochim Acta 96:159–165

    CAS  Google Scholar 

  24. Chen C, Li X, Zhao D, Tan X, Wang X (2007) Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids Surf A.302:449–454

    Article  Google Scholar 

  25. Liu Y, Xu J (2013) Effect of environmental conditions on 109Cd(II) sorption to MnO2. J Radioanal Nucl Chem 295:1001–1008

    Google Scholar 

  26. Wang Z, Lee S, Kapoor P, Tebo BM, Giammar DE (2013) Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals. Geochim Cosmochim Acta 100:24–40

    Article  CAS  Google Scholar 

  27. Han X, Li Y, Gu J (2011) Oxidation of As(III) by MnO2 in the absence and presence of Fe(II) under acidic conditions. Geochim Cosmochim Acta 75:368–379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Jyoti Prakash, Powder Metallurgy Division, BARC and Soumitra Kar, Desalination Division, BARC for surface area and FTIR measurements respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Tomar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhagyashree, K., Kar, A., Kasar, S. et al. Sorption of americium from low-level liquid wastes by nanocrystalline MnO2 . J Radioanal Nucl Chem 299, 1433–1437 (2014). https://doi.org/10.1007/s10967-013-2895-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2895-y

Keywords

Navigation