Skip to main content
Log in

Improved Eu(III) immobilization by Cladosporium sphaerospermum induced by low-temperature plasma

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To increase the bioaccumulation of Eu(III), low temperature plasma as a method of mutagenesis was introduced to mutate Cladosporium sphaerospermum (C. sphaerospermum). Mycelia doses, pH, and ionic strength obviously affected the Eu(III) immobilization on mycelia. The maximum immobilization capacities of Eu(III) on mutated C. sphaerospermum was 278.8 mg/g at pH 6.5, which was approximately three times than that of raw C. sphaerospermum. Before and after Eu(III) loaded mycelia were analyzed by XPS and FTIR, and intracellular structures of mycelia changed obviously under Eu(III) stress by TEM analysis. The results suggested that low temperature plasma could be utilized as a valuable treatment technology to improve fungi for the removal and immobilization of radionuclides in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sheng GD, Yang ST, Li YM, Gao X, Huang YY, Hu J, Wang XK (2014) Retention mechanisms and microstructure of Eu(III) on manganese dioxide studied by batch and high resolution exafs technique. Radiochim Acta 102:155–167

    Article  CAS  Google Scholar 

  2. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43:5776–5782

    Article  CAS  PubMed  Google Scholar 

  3. Wang XX, Yang SB, Shi WQ, Li JX, Hayat T, Wang XK (2015) Different interaction mechanisms of Eu(III) and 243Am (III) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation. Environ Sci Technol 49:11721–11728

    Article  CAS  PubMed  Google Scholar 

  4. Wang XX, Yu SJ, Chen ZS, Song WC, Chen YT, Hayat T, Alsaedi A, Guo W, Hu J, Wang XK (2015) Complexation of radionuclide 152+154Eu (III) with alumina-bound fulvic acid studied by batch and time-resolved laser fluorescence spectroscopy. Sci China Chem 60:107–114

    Article  CAS  Google Scholar 

  5. Sun YB, Wu ZY, Wang XX, Ding CC, Cheng WC, Yu SH, Wang XK (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 50:4459–4467

    Article  CAS  PubMed  Google Scholar 

  6. Chen CL, Wang XK, Nagatsu M (2009) Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol 43:2362–2367

    Article  CAS  PubMed  Google Scholar 

  7. Xie Y, Helvenston EM, Shuller-Nickles LC, Powell BA (2016) Surface complexation modeling of Eu(III) and U (VI) interactions with graphene oxide. Environ Sci Technol 50:1821–1827

    Article  CAS  PubMed  Google Scholar 

  8. Sun YB, Lu SH, Wang XX, Xu C, Li JX, Chen CL, Chen J, Hayat T, Alsaedi A, Alharbi NS, Wang XK (2017) Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238 U(VI) and 241 Am(III). Environ Sci Technol 51:12274–12282

    Article  CAS  PubMed  Google Scholar 

  9. Yu SJ, Wang XX, Yang ST, Sheng GD, Alsaedi A, Hayat T, Wang XK (2017) Interaction of radionuclides with natural and manmade materials using XAFS technique. Sci China Chem 60:170–187

    Article  CAS  Google Scholar 

  10. Bouby M, Lutzenkirchen J, Dardenne K, Preocanin T, Denecke MA, Klenze R, Geckeis H (2010) Sorption of Eu(III) onto titanium dioxide: measurements and modeling. J Colloid Interface Sci 350:551–561

    Article  CAS  PubMed  Google Scholar 

  11. Konstantinou M, Pashalidis I (2008) Competitive sorption of Cu(II), Eu(III) and U(VI) ions on TiO2 in aqueous solutions—a potentiometric study. Coll Surf A 324:217–221

    Article  CAS  Google Scholar 

  12. Wang XX, Yu SJ, Chen ZS, Zhao YS, Jin J, Wang XK (2017) Microstructures and speciation of radionuclides in natural environment studied by advanced spectroscopy and theoretical calculation. Sci China Chem 60:1149–1152

    Article  CAS  Google Scholar 

  13. Galunin E, Alba MD, Santos MJ, Abrão T, Vidal M (2010) Lanthanide sorption on smectitic clays in presence of cement leachates. Geochim Cosmochim Acta 74:862–875

    Article  CAS  Google Scholar 

  14. Schnurr A, Marsac R, Rabung T, Lützenkirchen J, Geckeis H (2015) Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim Cosmochim Acta 151:192–202

    Article  CAS  Google Scholar 

  15. Dolatyari L, Yaftian MR, Rostamnia S (2016) Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J Taiwan Inst Chem Eng 60:174–184

    Article  CAS  Google Scholar 

  16. Song WC, Liang J, Wen T, Wang XX, Hu J, Hayat T, Alsaedi A, Wang XK (2016) Accumulation of Co(II) and Eu(III) by the mycelia of Aspergillus niger isolated from radionuclide-contaminated soils. Chem Eng J 304:186–193

    Article  CAS  Google Scholar 

  17. Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119:1278–1290

    Article  CAS  PubMed  Google Scholar 

  18. Purchase D, Scholes LNL, Shutes Revitt DM (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106:1163–1174

    Article  CAS  PubMed  Google Scholar 

  19. Sun J, Zou X, Ning Z, Sun M, Peng J, Xiao T (2012) Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination. Sci Total Environ 441:258–264

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Wen Y, Zhou J, Dai Q, Wu Y (2012) The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic(III). Environ Sci Pollut Res 19:3371–3379

    Article  CAS  Google Scholar 

  21. Laroussi M, Richardson JP, Dobbs FC (2002) Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology. Appl Phys Lett 81:772–774

    Article  CAS  Google Scholar 

  22. Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY (2014) Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 98:5387–5396

    Article  CAS  PubMed  Google Scholar 

  23. Chen HX, Xiu ZL, Bai FW (2014) Improved ethanol production from xylose by Candida shehatae induced by dielectric barrier discharge air plasma. Plasma Sci Technol 16:602–607

    Article  CAS  Google Scholar 

  24. Dong XY, Xiu ZL, Li S, Hou YM, Zhang DJ, Ren CS (2010) Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol production in Klebsiella pneumoniae. Biotechnol Lett 32:1245–1250

    Article  CAS  PubMed  Google Scholar 

  25. Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT (2010) Novel mutation breeding method for Streptomyces avermitilis, using an atmospheric pressure glow discharge plasma. J Appl Microbiol 108:851–858

    Article  CAS  PubMed  Google Scholar 

  26. Qi F, Kitahara Y, Wang Z, Zhao X, Du W, Liu D (2014) Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate. J Chem Technol Biotechnol 89:735–742

    Article  CAS  Google Scholar 

  27. El-Sayed MT (2015) An investigation on tolerance and biosorption potential of Aspergillus awamori ZU JQ 965830.1 to Cd(II). Ann Microbiol 65:69–83

    Article  CAS  Google Scholar 

  28. Song WC, Wang XX, Tao W, Wang H, Hayat T, Wang XK (2016) Enhanced accumulation of U(VI) by Aspergillus oryzae mutant generated by dielectric barrier discharge air plasma. J Radioanal Nucl Chem 310:1353–1360

    Article  CAS  Google Scholar 

  29. Ma J, Zhang H, Cheng C, Shen J, Bao L, Han W (2016) Contribution of hydrogen peroxide to non-thermal atmospheric pressure plasma induced a549 lung cancer cell damage. Plasma Proces Polym 9999:1–12

    Google Scholar 

  30. Song WC, Wang EJ, Gao Y, Wu JB, Rao SH, Wang HZ, Bao LZ (2017) Low temperature plasma induced apoptosis in CNE-2Z cells through endoplasmic reticulum stress and mitochondrial dysfunction pathways. Plasma Proces Polym. https://doi.org/10.1002/ppap.201600249

    Article  Google Scholar 

  31. Prasad KS, Ramanathan AL, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (As + 3) and arsenate (As + 5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34:2701–2708

    Article  CAS  PubMed  Google Scholar 

  32. Yuzer H, Kara M, Sabah E, Celik MS (2008) Some experiments on the precipitation of suspensoid protein by various ions and some suggestions as to its cause. J Hazard Mater 151:33–37

    Article  CAS  PubMed  Google Scholar 

  33. Strawn DG, Sparks DL (1999) The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interf Sci 216:257–269

    Article  CAS  Google Scholar 

  34. Ding CC, Feng S, Cheng W, Zhang J, Li X, Liao J, Liu N (2014) Biosorption behavior and mechanism of thorium on Streptomyces sporoverrucosus dwc-3. J Radioanal Nucl Chem 301:237–245

    Article  CAS  Google Scholar 

  35. Texier AC, Andres Y, Cloirec PL (1997) Selective biosorption of lanthanide (La, Eu) ions by Mycobacterium smegmatis. Environ Technol 18:835–841

    Article  CAS  Google Scholar 

  36. Texier AC, Andres Y, Cloirec PL (1999) Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa. Environ Sci Technol 33:489–495

    Article  CAS  Google Scholar 

  37. Oliveira RC, Hammer P, Guibal E, Taulemesse JM, Garcia O (2014) Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: preliminary studies. Chem Eng J 239:381–391

    Article  CAS  Google Scholar 

  38. Song WC, Wang XX, Wang Q, Shao DD, Wang XK (2015) Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Phys Chem Chem Phys 17:398–406

    Article  CAS  PubMed  Google Scholar 

  39. Yuan SJ, Sun M, Sheng GP, Li Y, Li WW, Yao RS, Yu HQ (2010) Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity. Environ Sci Technol 45:1152–1157

    Article  CAS  PubMed  Google Scholar 

  40. Tan XL, Fan QH, Wang XK, Grambow B (2009) Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ Sci Technol 43:3115–3121

    Article  CAS  PubMed  Google Scholar 

  41. Doshi H, Ray A, Kothari IL (2007) Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Curr Microbiol 54:213–218

    Article  CAS  PubMed  Google Scholar 

  42. Mezaguer M, Kamel N, Lounici H, Kamel Z (2013) Characterization and properties of Pleurotus mutilus fungal biomass as adsorbent of the removal of uranium(VI) from uranium leachate. J Radioanal Nucl Chem 295:393–403

    Article  CAS  Google Scholar 

  43. Kumar R, Bhatia D, Singh R, Bishnoi NR (2012) Metal tolerance and sequestration of Ni(II), Zn(II) and Cr(VI) ions from simulated and electroplating wastewater in batch process: Kinetics and equilibrium study. Int Biodeter Biodegr 66:82–90

    Article  CAS  Google Scholar 

  44. Li N, Zeng G, Huang D, Huang C, Lai C, Wei Z, Xu P, Zhang C, Cheng M, Yan M (2015) Response of extracellular carboxylic and thiol ligands (oxalate, thiol compounds) to Pb2+ stress in Phanerochaete chrysosporium. Environ Sci Pollut R 22:12655–12663

    Article  CAS  Google Scholar 

  45. Srivastava S, Thakur IS (2006) Biosorption potency of Aspergillus niger for removal of chromium(VI). Curr Microbial 53:232–237

    Article  CAS  Google Scholar 

  46. McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu D, Kottke I (2004) Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (EELS). Bioresour Technol 94:153–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (21607156) and China Postdoctoral Science Foundation funded project (2015M581047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lvmu Li or Wencheng Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Li, L. & Song, W. Improved Eu(III) immobilization by Cladosporium sphaerospermum induced by low-temperature plasma. J Radioanal Nucl Chem 316, 963–970 (2018). https://doi.org/10.1007/s10967-018-5751-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5751-2

Keywords

Navigation