Skip to main content
Log in

Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Developing rapid and diverse microbial mutation tool is of importance to strain modification. In this review, a new mutagenesis method for microbial mutation breeding using the radio-frequency atmospheric-pressure glow discharge (RF APGD) plasma jets is summarized. Based on the experimental study, the helium RF APGD plasma jet has been found to be able to change the DNA sequences significantly, indicating that the RF APGD plasma jet would be a powerful tool for the microbial mutagenesis with its outstanding features, such as the low and controllable gas temperatures, abundant chemically reactive species, rapid mutation, high operation flexibility, etc. Then, with the RF APGD plasma generator as the core component, a mutation machine named as atmospheric and room temperature plasma (ARTP) mutation system has been developed and successfully employed for the mutation breeding of more than 40 kinds of microorganisms including bacteria, fungi, and microalgae. Finally, the prospect of the ARTP mutagenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamovich IV, Choi I, Jiang N, Kim J-H, Keshav S, Lempert WR, Mintusov E, Nishihara M, Samimy M, Uddi M (2009) Plasma assisted ignition and high-speed flow control: non-thermal and thermal effects. Plasma Sources Sci Technol 18:034018

    Article  Google Scholar 

  • Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen HX, Bai FW, Xiu ZL (2010) Oxidative stress induced in Saccharomyces cerevisiae exposed to dielectric barrier discharge plasma in air at atmospheric pressure. IEEE Trans Plasma Sci 38(8):1885–1891

    Article  CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Dong XY, Xiu ZL, Li S, Hou YM, Zhang DJ, Ren CS (2010) Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol production in Klebsiella pneumoniae. Biotechnol Lett 32(9):1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang MY, Jin LH, Zhang C, Tan YY, Jiang PX, Ge N, Li HP, Xing XH (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS ONE 8(10):e77046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasilets VN, Ayan H, Friedman G (2007) Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process Polym 4:370–375

    Article  CAS  Google Scholar 

  • Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34(4):1257–1269

    Article  CAS  Google Scholar 

  • Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, Liang DF, Jiang M, Ouyang PK (2011) Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol Lett 33:2379–2383

    Article  CAS  PubMed  Google Scholar 

  • Hua XF, Wang J, Wu ZJ, Zhang HX, Li HP, Xing XH, Liu Z (2010) A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil. Biochem Eng J 49:201–206

    Article  CAS  Google Scholar 

  • Jayaraman B, Shyy W (2008) Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Prog Aeosp Sci 44(3):139–191

    Article  Google Scholar 

  • Jiang M, Wan Q, Liu R, Liang L, Chen X, Wu M, Zhang H, Chen K, Ma J, Wei P, Ouyang PK (2014) Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies. J Ind Microbiol Biotechnol 41(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Jin LH, Fang MY, Zhang C, Jiang PX, Ge N, Li HP, Xing XH, Bao CY (2011) Operating conditions for the rapid mutation of the oleaginous yeast by atmospheric and room temperature plasmas and the characteristics of the mutants. Chin J Biotech 27(3):461–467 (In Chinese)

    CAS  Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol Plant Func Genom 236:189–203

    CAS  Google Scholar 

  • Kogelschatz U (2004) Atmospheric-pressure plasma technology. Plasma Phys Control Fusion 46:B63–B75

    Article  CAS  Google Scholar 

  • Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115012

    Article  Google Scholar 

  • Lanfaloni L, Trinei M, Russo M, Gualerzi CO (1991) Mutagenesis of the cyanobacterium Spirulina platensis by UV and nitrosoguanidine treatment. FEMS Microbiol Lett 83:85–90

    Article  CAS  Google Scholar 

  • Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci 30(4):1409–1415

    Article  CAS  Google Scholar 

  • Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2:391–400

    Article  CAS  Google Scholar 

  • Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233:81–86

    Article  CAS  Google Scholar 

  • Laroussi M, Richardson JP, Dobbs FC (2002) Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology. Appl Phys Lett 81(4):772–774

    Article  CAS  Google Scholar 

  • Laroussi M, Mendis DA, Rosenberg M (2003) Plasma interaction with microbes. New J Phys 5:41.1–41.10

    Article  Google Scholar 

  • Lee H, Popodi E, Tang H, Foster PL (2012) Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci 109(41):E2774–E2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li HP, Sun WT, Wang HB, Li G, Bao CY (2007) Electrical features of radio-frequency, atmospheric-pressure, bare-metallic-electrode glow discharges. Plasma Chem Plasma Process 27(5):529–545

    Article  Google Scholar 

  • Li G, Li HP, Sun WT, Wang S, Tian Z, Bao CY (2008a) Discharge features of radio-frequency, atmospheric-pressure cold plasmas under an intensified local electric field. J Phys D Appl Phys 41:202001

    Article  Google Scholar 

  • Li G, Li HP, Wang LY, Wang S, Zhao HX, Sun WT, Xing XH, Bao CY (2008b) Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl Phys Lett 92:221504

    Article  Google Scholar 

  • Li HP, Li G, Sun WT, Wang S, Bao CY, Wang L, Huang Z, Ding N, Zhao H, Xing XH (2008c) Radio-frequency, atmospheric-pressure glow discharges: Producing methods, characteristics and applications in bio-medical fields. AIP Conf Proc 982:584–591

    Article  CAS  Google Scholar 

  • Li G, Le PS, Li HP, Bao CY (2010) Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet. J Appl Phys 107:103304

    Article  Google Scholar 

  • Li HP, Wang LY, Li G, Jin LH, Le PS, Zhao HX, Xing XH, Bao CY (2011) Manipulation of lipase activity by the helium radio-frequency, atmospheric-pressure glow discharge plasma jet. Plasma Process Polym 8:224–229

    Article  CAS  Google Scholar 

  • Li HP, Wang ZB, Ge N, Le PS, Wu H, Lu Y, Wang LY, Zhang C, Bao CY, Xing XH (2012) Studies on the physical characteristics of the radio-frequency atmospheric-pressure glow discharge plasmas for the genome mutation of Methylosinus trichosporium. IEEE Trans Plasma Sci 40(11):2853–2860

    Article  CAS  Google Scholar 

  • Liu RM, Liang LY, Ma JF, Ren XY, Jiang M, Chen KQ, Wei P, Ouyang PK (2013) An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem 48(11):1603–1609

    Article  CAS  Google Scholar 

  • Lu Y, Wang LY, Ma K, Li G, Zhang C, Zhao HX, Lai QH, Li HP, Xing XH (2011) Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem Eng J 55:17–22

    Article  CAS  Google Scholar 

  • Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21

    Article  CAS  PubMed  Google Scholar 

  • Park J, Henins I, Herrmann HW, Selwyn GS, Hicks RF (2001) Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source. J Appl Phys 89(1):20–28

    Article  CAS  Google Scholar 

  • Qi F, Kitahara YK, Wang ZT, Zhao XB, Du W, Liu DH (2013) Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate. J Chem Technol Biotechnol. doi:10.1002/jctb.4180, Published online in Wiley Online Library

    Google Scholar 

  • Riccardi G, Sora S, Ciferri O, Bacteriol J (1981) Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis. J Bacteriol 147:1002–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riccardi G, De Rossi E, Milano A, De Felice M (1988) Mutants of Spirulina platensis resistant to valine inhibition. FEMS Microbiol Lett 49:19–23

    Article  Google Scholar 

  • Schütze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694

    Article  Google Scholar 

  • Shi JJ, Deng XT, Hall R, Punnett JD, Kong MG (2003) Three modes in a radio frequency atmospheric pressure glow discharge. J Appl Phys 94(10):6303–6310

    Article  CAS  Google Scholar 

  • Singh DP, Singh N (1997) Isolation and characterization of a metronidazole tolerant mutant of the cyanobacterium Spirulina platensis exhibiting multiple stress tolerance. World J Microbiol Biotechnol 13:179–183

    Article  CAS  Google Scholar 

  • Sun WT, Liang TR, Wang HB, Li HP, Bao CY (2007) The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes. Plasma Sources Sci Technol 16:290–296

    Article  CAS  Google Scholar 

  • Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Pt B 61:2–30

    Article  Google Scholar 

  • von Woedtke T, Reuter S, Masur K, Weltmann K-D (2013) Plasmas for medicine. Phys Rep 530(4):291–320

    Article  Google Scholar 

  • Wang LY (2009) Studies on the mechanisms and applications of the atmospheric room temperature plasmas acting on the microbes. Ph. D. Thesis, Tsinghua University (In Chinese)

  • Wang S, Schulz-von Der Gathen V, Döbele HF (2003) Discharge comparison of nonequilibrium atmospheric pressure Ar/O2 and He/O2 plasma jets. Appl Phys Lett 83(16):3272–3274

    Article  CAS  Google Scholar 

  • Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, Li HP, Gou ZX, Bao CY (2010) Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J Appl Microbiol 108:851–858

    Article  CAS  PubMed  Google Scholar 

  • Wang FQ, Yuan H, Xie H, Song AD (2011) Mutation breeding of butanol high-yielding strain and its fermentation condition optimization. China Brew 230:84–86 (In Chinese)

    Google Scholar 

  • Wang ZB, Le PS, Ge N, Nie QY, Li HP, Bao CY (2012) One-dimensional modeling on the asymmetric features of a radio-frequency atmospheric helium glow discharge produced using a co-axial-type plasma generator. Plasma Chem Plasma Process 32:859–874

    Article  CAS  Google Scholar 

  • Xia SQ, Liu L, Zhang DX, Li JH, Du GC, Chen J (2010) Mutation and selection of transglutaminase producing strain by atmospheric pressure glow discharge plasma. Microbiol China 37:1642–1649 (In Chinese)

    CAS  Google Scholar 

  • Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, Xing X, Li H (2011) Strain improvement for enhanced production of cellulase in Trichoderma viride. Appl Biochem Microbiol 47:53–58

    Article  CAS  Google Scholar 

  • Zheng MY, Cai YH, Lu ZQ, Yan JN, Zhang X, Zhang C, Li HP, Xing XH (2013) Screening of high proline yield mutants by rapid mutation using atmospheric and room temperature plasmas. Food Ferment Ind 39(1):36–40 (In Chinese)

    CAS  Google Scholar 

  • Zhou ZW, Huang YF, Yang SZ, Deng MS (2010) Effects of atmospheric pressure plasma on the growth, yield and quality of tomato. J Anhui Ari Sci 38(2):1085–1088 (In Chinese)

    Google Scholar 

  • Zong H, Zhan Y, Li X, Peng LJ, Feng FQ, Li D (2012) A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr J Microbiol Res 6(13):3154–3158

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Tsinghua University Initiative Scientific Research Program (No. 2011Z01019), National Natural Science Foundation of China (Nos. 10972119 and 61104204), and JST CREST of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-Ping Li or Xin-Hui Xing.

Additional information

Xue Zhang and Xiao-Fei Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, XF., Li, HP. et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 98, 5387–5396 (2014). https://doi.org/10.1007/s00253-014-5755-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5755-y

Keywords

Navigation