Skip to main content
Log in

Fabrication of titanate nanotubes/iron oxide magnetic composite for the high efficient capture of radionuclides: a case investigation of 109Cd(II)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the capture of radiocadmium (Cd(II)) by adsorption onto the titanate nanotube/iron oxide (TNT/IOM) magnetic composite as a function of contact time, pH, ionic strength, foreign cation and anion ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results indicated that the adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on ionic strength at pH <9.0, but was independent of ionic strength at pH >9.0. Outer-sphere surface complexation were the main mechanism of Cd(II) adsorption onto the TNT/IOM magnetic composite at low pH values, whereas the adsorption was mainly dominated via inner-sphere surface complexation at high pH values. The adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on foreign cation and anion ions at low pH values, but was independent of foreign cation and anion ions at high pH values. A positive effect of HA/FA on Cd(II) adsorption onto the TNT/IOM magnetic composite was found at low pH values, while a negative effect was observed at high pH values. From the results of Cd(II) removal by the TNT/IOM magnetic composite, the optimum reaction conditions can be obtained for the maximum removal of Cd(II) from water. It is clear that the best pH values of the system to remove Cd(II) from solution by using the TNT/IOM magnetic composite are 7.0–8.0. Considering the low cost and effective disposal of Cd(II)-contaminated wastewaters, the best condition for Cd(II) capture by the TNT/IOM magnetic composite is at room temperature and solid content of 0.5 g L−1. These results are quite important for estimating and optimizing the removal of Cd(II) and related metal ions by the TNT-based magnetic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  2. Li J, Li Y, Lu J (2009) Adsorption of herbicides 2,4-d and acetochlor on inorganic–organic bentonites. Appl Clay Sci 46:314–318

    Article  CAS  Google Scholar 

  3. Li J, Lu J, Li Y (2009) Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. J Appl Polym Sci 112:261–268

    Article  CAS  Google Scholar 

  4. Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2,4-d for its controlled release in water and soil. J Agric Food Chem 57:2868–2874

    Article  CAS  Google Scholar 

  5. Li J, Li Y, Dong H (2008) Controlled release of herbicide acetochlor from clay/carboxymethylcellulose gel formulations. J Agric Food Chem 56:1336–1342

    Article  CAS  Google Scholar 

  6. Li J, Yao J, Li Y, Shao Y (2012) Controlled release and retarded leaching of pesticides by encapsulating in carboxymethyl chitosan/bentonite composite gel. J Environ Sci Health B 47:795–803

    Article  Google Scholar 

  7. Dong H, Li J, Li Y, Hu L, Luo D (2012) Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chem Eng J 181–182:590–596

    Article  Google Scholar 

  8. Brennecka GA, Wasylenki LE, Bargar JR, Weyer S, Anbar AD (2011) Uranium isotope fractionation during adsorption to Mn-oxyhydroxides. Environ Sci Technol 45:1370–1375

    Article  CAS  Google Scholar 

  9. Lafferty BJ, Ginder-Vogel M, Sparks DL (2010) Arsenite oxidation by a poorly crystalline manganese-oxide 1: stirred-flow experiments. Environ Sci Technol 44:8460–8466

    Article  CAS  Google Scholar 

  10. Zhang Y, Li Y, Zheng X (2011) Removal of atrazine by nanoscale zero valent iron supported on organobentonite. Sci Total Environ 409:625–630

    Article  CAS  Google Scholar 

  11. Zhang Y, Li Y, Li J, Hu L, Zheng X (2011) Enhanced removal of nitrate by a novel composite: nanoscale zero valent iron supported on pillared clay. Chem Eng J 171:526–531

    Article  CAS  Google Scholar 

  12. Zhang Y, Li Y, Li J, Sheng G, Zhang Y, Zheng X (2012) Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J 185–186:243–249

    Article  Google Scholar 

  13. Li J, Li Y, Meng Q (2010) Removal of nitrate by zero-valent iron and pillared bentonite. J Hazard Mater 174:188–193

    Article  CAS  Google Scholar 

  14. Li Y, Zhang Y, Li J, Zheng X (2011) Enhanced removal of pentachlorophenol by a novel composite: nanoscale zero valent immobilized on organobentonite. Environ Pollut 159:3744–3749

    Article  CAS  Google Scholar 

  15. Li Y, Zhang Y, Li J, Sheng G, Zheng X (2013) Enhanced reduction of chlorophenols by nanoscale zerovalent iron supported on organobentonite. Chemosphere 92:368–374

    Google Scholar 

  16. Li Y, Li J, Zhang Y (2012) Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies. J Hazard Mater 227–228:211–218

    Article  Google Scholar 

  17. Bedoui K, Bekri-Abbes I, Srasra E (2008) Removal of cadmium(II) from aqueous solution using pure smectite and Lewatite S 100, the effect of time and metal concentration. Desalination 223:269–273

    Article  CAS  Google Scholar 

  18. Guo Z, Zhao D, Li Y, Chen Z, Niu H, Xu J (2011) Solution chemistry effects on sorption behavior of 109Cd(II) on Ca–montmorillonite. J Radioanal Nucl Chem 288:829–837

    Article  CAS  Google Scholar 

  19. Ulmanu M, Anger I, Fernández Y, Castrillón L, Marañón E (2008) Batch chromium(VI), cadmium(II) and lead(II) removal from aqueous solutions by horticultural peat. Water Air Soil Pollut 194:209–216

    Article  CAS  Google Scholar 

  20. Wang Y, Tang XW, Chen YM, Zhan LT, Li ZZ, Tang Q (2009) Adsorption behavior and mechanism of Cd(II) on loess soil from China. J Hazard Mater 172:30–37

    Article  CAS  Google Scholar 

  21. Palágyi Š, Salzer P, Mitro A (2006) Sorption, desorption and extraction of cadmium from some arable and forest soils. J Radioanal Nucl Chem 269:103–113

    Article  Google Scholar 

  22. Doyurum S, Çelik A (2006) Pb(II) and Cd(II) removal from aqueous solutions by olive cake. J Hazard Mater 138:22–28

    Article  CAS  Google Scholar 

  23. Low KS, Lee CK, Liew SC (2000) Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem 36:59–64

    Article  CAS  Google Scholar 

  24. Lee SM, Davis AP (2001) Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge. Water Res 35:534–540

    Article  CAS  Google Scholar 

  25. Rengan K, Sun BC (2004) Sorption of Zn(II) and Cd(II) by chelating resins: comparison of three resins. J Radioanal Nucl Chem 262:175–182

    Article  CAS  Google Scholar 

  26. Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coir pith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv Environ Res 7:471–478

    Article  CAS  Google Scholar 

  27. Sheng G, Hu B Role of solution chemistry on the trapping of radionuclide Th(VI) using titanate nanotubes as an efficient adsorbent. J Radioanal Nucl Chem. doi:10.1007/s10967-012-2389-3

  28. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  29. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  CAS  Google Scholar 

  30. Lee CK, Lin KS, Wu CF, Lyu MD, Lo CC (2008) Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes. J Hazard Mater 150:494–503

    Article  CAS  Google Scholar 

  31. Lee CK, Wang CC, Juang LC, Lyu MD, Hung SH, Liu SS (2008) Effects of sodium content on the microstructures and basic dye cation exchange of titanate nanotubes. Colloids Surf A 317:164–173

    Article  CAS  Google Scholar 

  32. An HQ, Zhu BL, Wu HY, Zhang M, Wang SR, Zhang SM, Wu SH, Huang WP (2008) Synthesis and characterization of titanate and CS2-modified titanate nanotubes as well as their adsorption capacities for heavy metal ions. Chem J Chin Univ 29:439–444

    CAS  Google Scholar 

  33. Liu SS, Lee CK, Chen HC, Wang CC, Juang LC (2009) Application of titanate nanotubes for Cu(II) ions adsorptive removal from aqueous solution. Chem Eng J 147:188–193

    Article  CAS  Google Scholar 

  34. Sheng G, Dong H, Shen R, Li Y (2013) Microscopic insights into the temperature dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. Chem Eng J 217:486–494

    Article  CAS  Google Scholar 

  35. Sheng G, Yang S, Zhao D, Sheng J, Wang X (2012) Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique. Sci China Chem 55:182–194

    Article  CAS  Google Scholar 

  36. Sheng G, Yang S, Sheng J, Zhao D, Wang X (2011) Influence of solution chemistry on the removal of Ni(II) from aqueous solution to titanate nanotubes. Chem Eng J 168:178–182

    Article  CAS  Google Scholar 

  37. Chen CL, Wang XK, Nagatsu M (2009) Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  38. Li Y, Wang S, Cao A, Zhao D, Zhang X, Xu C, Luan Z, Ruan D, Liang J, Wu D, Wei B (2001) Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 350:412–416

    Article  CAS  Google Scholar 

  39. Peng X, Luan Z, Di Z, Zhang Z, Zhu C (2005) Carbon nanotubes–iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon 43:880–883

    Article  CAS  Google Scholar 

  40. Wang W, Serp P, Kalck P, Faria JL (2005) Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method. Appl Catal B 56:305–312

    Article  CAS  Google Scholar 

  41. Dong Y, Liu Z, Li Y, Chen L, Zhang Z (2012) Effect of pH, ionic strength, foreign ions, fulvic acid and temperature on 109Cd(II) sorption to γ-Al2O3. J Radioanal Nucl Chem 292:619–627

    Article  CAS  Google Scholar 

  42. Huang Y, Wang H, Gong S (2012) Sorption behavior of hydroxyapatite for 109Cd(II) as a function of environmental conditions. J Radioanal Nucl Chem 292:545–553

    Article  CAS  Google Scholar 

  43. Wu CH, Lin CF, Horng PY (2004) Adsorption of copper and lead ions onto regenerated sludge from a water treatment plant. J Environ Sci Health A 39:237–252

    Article  Google Scholar 

  44. Wu CH (2007) Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. J Colloid Interface Sci 311:338–346

    Article  CAS  Google Scholar 

  45. Sheng GD, Shao DD, Fan QH, Xu D, Chen YX, Wang XK (2009) Effect of pH and ionic strength on sorption of Eu(III) to MX-80 bentonite: batch and XAFS study. Radiochim Acta 97:621–630

    Article  CAS  Google Scholar 

  46. Hu B, Cheng W, Zhang H, Sheng G (2010) Sorption of radionickel to goethite: effect of water quality parameters and temperature. J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  47. Hu B, Cheng W, Zhang H, Yang S (2010) Solution chemistry effects on sorption behavior of radionuclide 63Ni(II) in illite–water suspensions. J Nucl Mater 406:263–270

    Article  CAS  Google Scholar 

  48. Sheng G, Li Y, Dong H, Shao D (2012) Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes. J Radioanal Nucl Chem 293:797–806

    Article  CAS  Google Scholar 

  49. Sheng G, Dong H, Li Y (2012) Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. J Environ Radioact 113:108–115

    Article  CAS  Google Scholar 

  50. Sheng G, Shen R, Dong H, Li Y (2013) Colloidal diatomite, radionickel and humic substance interaction: a combined batch, XPS and EXAFS investigation. Environ Sci Pollut Res 20:3708–3717

    Article  CAS  Google Scholar 

  51. Sheng G, Hu J, Jin H, Yang S, Ren X, Li J, Chen Y, Wang X (2010) Effect of humic acid, fulvic acid, pH, ionic strength and temperature on 63Ni(II) sorption to MnO2. Radiochim Acta 98:291–299

    Article  CAS  Google Scholar 

  52. Sheng G, Sheng J, Yang S, Hu J, Wang X (2011) Behavior and mechanism of Ni(II) uptake on MnO2 by a combination of macroscopic and EXAFS investigation. J Radioanal Nucl Chem 289:129–135

    Article  CAS  Google Scholar 

  53. Guo Z, Xu D, Zhao D, Zhang S, Xu J (2011) Influence of pH, ionic strength, foreign ions and FA on adsorption of radiocobalt on goethite. J Radioanal Nucl Chem 287:505–512

    Article  CAS  Google Scholar 

  54. Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Sorption of Ni(II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature. Appl Radiat Isot 67:1600–1608

    Article  CAS  Google Scholar 

  55. Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X (2011) Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS and EXAFS techniques. Environ Sci Technol 45:7718–7726

    Article  CAS  Google Scholar 

  56. Wang SW, Dong YH, He ML, Chen L, Yu XJ (2009) Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions. Appl Clay Sci 43:164–171

    Article  CAS  Google Scholar 

  57. Sheng G, Hu J, Wang X (2008) Sorption properties of Th(IV) on the raw diatomite-effects of contact time, pH, ionic strength and temperature. Appl Radiat Isot 66:1313–1320

    Article  CAS  Google Scholar 

  58. Sheng G, Wang S, Hu J, Lu Y, Li J, Dong Y, Wang X (2009) Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids Surf A 339:159–166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, L., Zheng, J. & Wang, L. Fabrication of titanate nanotubes/iron oxide magnetic composite for the high efficient capture of radionuclides: a case investigation of 109Cd(II). J Radioanal Nucl Chem 298, 1947–1956 (2013). https://doi.org/10.1007/s10967-013-2598-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2598-4

Keywords

Navigation