Skip to main content
Log in

Effect of pH, ionic strength, foreign ions, fulvic acid and temperature on 109Cd(II) sorption to γ-Al2O3

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sorption of Cd(II) from aqueous solution on γ-Al2O3 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on γ-Al2O3 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on γ-Al2O3 was an spontaneous and endothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ren XM, Chen CL, Nagatsu M, Wang XK (2011) Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  2. Tan XL, Fang M, Wang XK (2010) Molecules 15:8431–8468

    Article  CAS  Google Scholar 

  3. Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  4. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  5. Bedoui K, Bekri-Abbes I, Srasra E (2008) Desalination 223:269–273

    Article  CAS  Google Scholar 

  6. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860

    Article  CAS  Google Scholar 

  7. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Microporous Mesoporous Mater 123:1–9

    Article  CAS  Google Scholar 

  8. Sheng G, Sheng J, Yang S, Hu J, Wang X (2011) J Radioanal Nucl Chem 289:129–135

    Article  CAS  Google Scholar 

  9. Popa K, Pavel CC, Bilba N, Cecal A (2006) J Radioanal Nucl Chem 269(1):155–160

    Article  CAS  Google Scholar 

  10. Davila-Rangel JI, Solache-Rios M, Badillo-Almaraz VE (2005) J Radioanal Nucl Chem 267(1):139–145

    Article  Google Scholar 

  11. Arellano F, Garcia-Sosa I, Solache-Rios M (1995) J Radioanal Nucl Chem 199(2):107–113

    Article  CAS  Google Scholar 

  12. Zhao DL, Chen SH, Yang SB, Yang X, Yang ST (2011) Chem Eng J 166:1010–1016

    Article  CAS  Google Scholar 

  13. Apak R, Tutem E, Hugu M, Hizal J (1998) Water Res 32:430–440

    Article  CAS  Google Scholar 

  14. Wang Y, Tang XW, Chen YM, Zhan LT, Li ZZ, Tang Q (2009) J Hazard Mater 172:30–37

    Article  CAS  Google Scholar 

  15. Palagyi S, Salzer P, Mitro A (2006) J Radioanal Nucl Chem 269:103–113

    Article  CAS  Google Scholar 

  16. Doyurum S, Celik A (2006) J Hazard Mater 138:22–28

    Article  CAS  Google Scholar 

  17. Lee SM, Davis AP (2001) Water Res 35:534–540

    Article  CAS  Google Scholar 

  18. Rengan K, Sun BC (2004) J Radioanal Nucl Chem 262:175–182

    Article  CAS  Google Scholar 

  19. Wang XK, Chen CL, Du JZ, Tan XL, Xu D, Yu SM (2005) Environ Sci Technol 39:7084–7088

    Article  CAS  Google Scholar 

  20. Kadirvelu K, Namasivayam C (2003) Adv Environ Res 7:471–478

    Article  CAS  Google Scholar 

  21. Yang SB, Hu J, Chen CL, Shao DD, Wang XK (2011) Environ Sci Technol 45:3621–3627

    Article  CAS  Google Scholar 

  22. Hu J, Shao DD, Chen CL, Sheng GD, Li JX, Wang XK, Nagatsu M (2010) J Phys Chem B 114:6779–6785

    Article  CAS  Google Scholar 

  23. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  24. Chen CL, Ogino A, Wang XK, Nagatsu M (2010) Appl Phys Lett 96(13):131504

    Article  Google Scholar 

  25. Chen CL, Liang B, Ogino A, Wang XK, Nagatsu M (2009) J Phys Chem C 113(18):7659–7665

    Article  CAS  Google Scholar 

  26. Chen CL, Hu J, Shao DD, Li JX, Wang XK (2009) J Hazard Mater 164:923–928

    Article  CAS  Google Scholar 

  27. Chen CL, Xu D, Tan XL, Wang XK (2007) J Radioanal Nucl Chem 273:227–233

    Article  CAS  Google Scholar 

  28. Tan XL, Wang XK, Geckeis H, Rabung T (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  29. Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  30. Guo ZQ, Zhao DL, Li Y, Chen ZS, Niu HH, Xu ZJ (2011) J Radioanal Nucl Chem 288:829–837

    Article  CAS  Google Scholar 

  31. Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D, Wang XK (2008) Appl Clay Sci 41:17–23

    Article  CAS  Google Scholar 

  32. Wang XK, Rabung TH, Geckeis H, Panak PJ, Klenze R, Fanghaenel Th (2004) Radiochim Acta 92:691–695

    Article  CAS  Google Scholar 

  33. Chen CL, Hu J, Xu D, Tan XL, Meng YD, Wang XK (2008) J Colloid Interface Sci 323:33–41

    Article  CAS  Google Scholar 

  34. Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  35. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  36. Sheng GD, Hu J, Jin H, Yang ST, Ren XM, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98(5):291

    Article  CAS  Google Scholar 

  37. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Environ Sci Technol 38:1399–1407

    Article  CAS  Google Scholar 

  38. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  39. Zhang H, Chen L, Zhang DC, Lu SS, Yu XJ (2011) Colloids Surf A 380:16–24

    Article  CAS  Google Scholar 

  40. Borah D, Senapati K (2006) Fuel 85:1929–1934

    Article  CAS  Google Scholar 

  41. Zhao GX, Zhang HX, Fan QH, Ren XM, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 173:661–668

    Article  CAS  Google Scholar 

  42. Yang X, Yang SB, Yang ST, Hu J, Tan XL, Wang XK (2011) Chem Eng J 168:86–93

    Article  CAS  Google Scholar 

  43. Esmadi F, Simm J (1995) Colloids Surf A 104:265–270

    Article  CAS  Google Scholar 

  44. Xu D, Tan XL, Chen CL, Wang XK (2008) Appl Clay Sci 41:37–46

    Article  Google Scholar 

  45. Fan QH, Shao DD, Hu J, Wu WS, Wang XK (2008) Surf Sci 602:778–785

    Article  CAS  Google Scholar 

  46. Zhang SW, Guo ZQ, Xu JZ, Niu HH, Chen ZS, Xu JZ (2010) J Radioanal Nucl Chem 288:121–130

    Article  Google Scholar 

  47. Yang ST, Sheng GD, Tan XL, Hu J, Du JZ, Montavon G, Wang XK (2011) Geochim Cosmochim Acta. doi:10.1016/j.gca.2011.08.024

  48. Yang K, Xing B (2009) Environ Pollut 157:1095–1100

    Article  CAS  Google Scholar 

  49. Dong YH, Liu ZJ, Li YY (2011) J Radioanal Nucl Chem 289(1):257–265

    Article  CAS  Google Scholar 

  50. Tan XL, Fang M, Chen CL, Yu SM, Wang XK (2008) Carbon 46:1741–1750

    Article  CAS  Google Scholar 

  51. Chen CL, Wang XK (2007) Appl Geochem 22:436–445

    Article  CAS  Google Scholar 

  52. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  53. Tan XL, Chen CL, Yu SM, Wang XK (2008) Appl Geochem 23:2767–2777

    Article  CAS  Google Scholar 

  54. Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259

    Article  CAS  Google Scholar 

  55. Chen CL, Li XL, Zhao DL, Tan XL, Wang XK (2007) Colloid Surf A 302:449–454

    Article  CAS  Google Scholar 

  56. Shao DD, Hu J, Sheng GD, Ren XM, Chen CL, Wang XK (2010) J Phys Chem C 114:21524–21530

    Article  CAS  Google Scholar 

  57. Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP (2011) Adv Mater 23:3959–3963

    Article  CAS  Google Scholar 

  58. Özcan A, Öncü EM, Özcan AS (2006) Colloid Surf A 277:90–97

    Article  Google Scholar 

  59. Tan XL, Wang XK, Chen CL, Sun A (2007) Appl Radiat Isot 65:375–381

    Article  CAS  Google Scholar 

  60. Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333–340

    Article  CAS  Google Scholar 

  61. Guo ZQ, Li Y, Zhang SW, Niu HH, Chen ZS, Xu JZ (2011) J Hazard Mater 192:168–175

    Article  CAS  Google Scholar 

  62. Chen CL, Wang XK (2006) Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  63. Liu ZJ, Chen L, Dong YH, Zhang ZC (2011) J Radioanal Nucl Chem 289:851–859

    Article  CAS  Google Scholar 

  64. Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK (2011) Environ Sci Technol. doi:10.1021/ES202108q

  65. Zhang SW, Niu HH, Guo ZQ, Chen ZS, Wang HP, Xu JZ (2011) J Radioanal Nucl Chem 289:479–487

    Article  CAS  Google Scholar 

  66. Xu D, Chen CL, Tan XL, Hu J, Wang XK (2007) Appl Geochem 22:2892–2906

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from the Natural Science Foundation of Shandong Province (ZR2009BM045) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhui Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Liu, Z., Li, Y. et al. Effect of pH, ionic strength, foreign ions, fulvic acid and temperature on 109Cd(II) sorption to γ-Al2O3 . J Radioanal Nucl Chem 292, 619–627 (2012). https://doi.org/10.1007/s10967-011-1456-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1456-5

Keywords

Navigation