Skip to main content
Log in

Calcification mechanism and bony bonding studies of calcium carbonate and composite aluminosilicate/calcium phosphate applied as biomaterials by using radioactivation methods

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Bony grafts are used as a filling biomaterial for defective bone. The introduction of new range of synthetic materials offers to surgeons additional possibilities to avoid virus transmission risks by using natural grafts in bony surgery. In this work, two materials, synthetic calcium carbonate and composite aluminosilicate/calcium phosphate were synthesized by an original method and experimented “in vivo” as biomaterials for bony filling. Extracted biopsies were studied by several physico chemical and biological methods. The aim was to evaluate the kinetic resorption and bioconsolidation of these materials. We focused on the bioconsolidation between implant and bone by realising cartographies from the implant to the bone and on the calcification mechanism by determination of the origin of Ca and Sr responsible of the neo-formed bone. Neutron activation analysis (NAA), radiotracers 45Ca* and 85Sr* and proton-induced X-ray emission (PIXE) were used. Concerning the synthetic calcium carbonate, results show that twelve months after implantation, the mineral composition of implant becomes similar to that of the mature bone. The neoformed bone is composed with Ca and Sr coming from the organism when the Ca and Sr of the implant were progressively eliminated. Concerning the composite geopolymer/calcium phosphate, PIXE and histological studies reveal the intimate links between the bone and the implant starting with the first month after implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Loty, S. Loty, J. M. Sautier, Implant, 4 (1998) 101.

    Google Scholar 

  2. R. Z. Legueros, G. Daculsi, I. Orly, in: Bone Bonding, Duscheyne, Kokubo and Van Blittersvijk (Eds), Leiderdorp, The Netherlands, Reed Healthcare Communication, 1993, p. 201.

    Google Scholar 

  3. S. Langstaff, M. Sayer, T. J. N. Smith, S. M. Pugh, Biomaterials, 22 (2001) 135.

    Article  CAS  Google Scholar 

  4. S. Verrier, R. Bareille, A. Rovina, M. Dard, J. Amedee, J. Mater. Sci., 7 (1996) 46.

    Article  CAS  Google Scholar 

  5. J. L. Irigaray, T. Sauvage, H. Oudadesse, J. Radioanal. Nucl. Chem., 174 (1993) 93.

    Article  CAS  Google Scholar 

  6. A. Lucas, J. Gaudé, C. Carel, J. F. Michel, G. Cathelineau, Intern. J. Inorg. Mater., 3 (2001) 87.

    Article  CAS  Google Scholar 

  7. A. Lucas-Girot, M. Bahout, C. Carel, J. Gaude, M. Matecki, J. Solid State Chem., 146 (1999) 73.

    Article  Google Scholar 

  8. A. Lucas-Girot, P. Langlois, J. C. Sangleboeuf, A. Ouammou, T. Rouxel, J. Gaude, Biomaterials, 23 (2002) 503.

    Article  CAS  Google Scholar 

  9. H. Oudadesse, S. Martin, A. C. Derrien, A. Lucas-Girot, G. Cathelineau, G. Blondiaux, J. Radioanal. Nucl. Chem., 262 (2004) 479.

    Article  CAS  Google Scholar 

  10. J. Davidovits, J. Thermal Anal., 37 (1991) 1633.

    Article  CAS  Google Scholar 

  11. J. Davidovits, Proc. 2nd Intern. Conf., Geopolymere, 99 (1999) 9.

    Google Scholar 

  12. R. E. Lyon, A. J. Foden, P. Balaguru, J. Davidovits, M. Davidovits, Fire Mater., 21 (1997) 67.

    Article  CAS  Google Scholar 

  13. A. C. Derrien, H. Oudadesse, J. C. Sangleboeuf, P. Briard, A. Lucas-Girot, J. Thermal Anal., 75 (2004) 937.

    Article  CAS  Google Scholar 

  14. M. Zoulgami, A. Lucas-Girot, V. Michaud, P. Briard, J. Gaudé, H. Oudadesse, Eur. Phys. J. AP, 119 (2002) 173.

    Article  CAS  Google Scholar 

  15. H. Oudadesse, A. C. Derrien, A. Lucas-Girot, Eur. Phys. J. AP, 31 (2005) 217.

    Article  CAS  Google Scholar 

  16. A. C. Derrien, H. Oudadesse, A. Lucas-Girot, G. Cathelineau, S. Martin, T. Sauvage, G. Blondiaux, Nucl. Instr. Meth., B226 (2004) 281.

    Google Scholar 

  17. J. L. Irigaray, H. Oudadesse, V. Brun, Biomaterials, 22 (2001) 629.

    Article  CAS  Google Scholar 

  18. T. Morohashi, T. Sano, K. Harai, S. Yamada, J. Pharmacol. 68 (1995) 153.

    CAS  Google Scholar 

  19. G. Boivin, P. Deloffre, B. Perrat, G. Panczer, M. Boudeulle, Y. Tsouderos, P. J. Meunier, J. Bone Miner. Res., 11 (1996) 1302.

    Article  CAS  Google Scholar 

  20. N. El Solh, F. Rousselet, Handbook of Stable Strontium, Plenum Press, New York, 1981, p. 11.

    Google Scholar 

  21. J. A. Maxwell, W. J. Teedsale, J. L. Campbell, Nucl. Instr. Meth., B95 (1995) 407.

    Google Scholar 

  22. J. L. Campbell, T. L. Hopman, J. A. Maxwell, Z. Nejedly, Nucl. Instr. Meth., B170 (2000) 193.

    Google Scholar 

  23. S. Martin, A. C. Derrien, H. Oudadesse, D. Chauvel-Lebret, G. Cathelineau, Eur. Cells Mater., 10 (2004) 341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Oudadesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oudadesse, H., Derrien, A.C., Lucas-Girot, A. et al. Calcification mechanism and bony bonding studies of calcium carbonate and composite aluminosilicate/calcium phosphate applied as biomaterials by using radioactivation methods. J Radioanal Nucl Chem 274, 421–428 (2007). https://doi.org/10.1007/s10967-007-1131-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-1131-z

Keywords

Navigation