Skip to main content
Log in

Review of Octacalcium Phosphate Materials for Bone Tissue Engineering

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

At present, reconstructive bone surgery makes wide use of calcium phosphate materials. They have the ability of filling and maintaining the volume of bone defects, are mechanically integrable with body tissues, are biocompatible, and have osteocompatible potential. The main problems of their application in bone tissue engineering are low constructional properties and insufficient biological activity in repairs of critical size defects. Osteoplastic materials based on resorbable calcium phosphates have been introduced into clinical practice relatively recently. These materials are octacalcium phosphate (OCP, Ca8(HPO4)2(PO4)4 ⋅ 5H2O). It is believed that OCP is one of the possible precursors of formation of biological hydroxyapatite. Hydroxyapatite is a crystal structure similar to hydroxyapatite (HA, Ca10(PO4)6(OH)2) and dicalcium phosphate dihydrate (DCPDH, CaHPO4 ⋅ 2H2O), with alternating layers of these calcium phosphates. OCP contains five water molecules as part of the crystalline unit cell. These features make OCP a better option than other calcium phosphates; in particular, they provide it with high reactive capability to rearrange into an apatite-like structure under the influence of the biological environment. The problem of creating OCP materials and products is that OCP is thermally unstable, which does not allow using conventional ceramic production methods (high-temperature processing). It is a relevant task to search for and develop alternative methods of generating porous materials from thermally unstable calcium phosphates, such as OCP, with preset composition, microstructure, and properties. This review is devoted to the development of the physicochemical basics of OCP calcium phosphate materials with widely variable chemical and phase composition and to the determination of their structuring regularities and properties, including additive technologies of creating personalized implants for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Bucholz, R.W., Nonallograft osteoconductive bone graft substitutes, Clin. Orthop. Relat. Res., 2002, vol. 395, pp. 44–52.

  2. Petrakova, N.V., Teterina, A.Yu., Mikheeva, P.V., Akhmedova, S.A., Kuvshinova, E.A., Sviridova, I.K., Sergeeva, N.S., Smirnov, I.V., Fedotov, A.Yu., Kargin, Y.F., Barinov, S.M., and Komlev, V.S., In vitro study of octacalcium phosphate behavior in different model solutions, ACS Omega, 2021, vol. 6, no. 11, pp. 7487–7498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meleti, Z., Shapiro, I.M., and Adams, C.S., Inorganic phosphate induces apoptosis of osteoblast-like cells in culture, Bone, 2000, vol. 27, pp. 359–366.

    Article  CAS  PubMed  Google Scholar 

  4. Barinov, S.M. and Komlev, V.S., Osteoinductive ceramic materials for bone tissue restoration: Octacalcium phosphate (review), Inorg. Mater.: Appl. Res., 2010, vol. 1, pp. 175–181.

    Article  Google Scholar 

  5. Bozo, I.Ya., Deev, R.V., Zhuravlyova, M.N., Komlev, V.S., Popov, V.K., Smirnov, I.V., and Fedotov, A.Yu., Gene-activated bone substitute based on octacalcium phosphate and doped with magnesium ions, Inorg. Mater.: Appl. Res., 2018, vol. 9, pp. 70–74. https://doi.org/10.1134/S2075113318010045

    Article  Google Scholar 

  6. Barinov, S.M., Ivannikov, A.Yu., Kalita, V.I., Komlev, D.I., Komlev, V.S., Radyuk, A.A., Smirnov, I.V., and Fedotov, A.Yu., Composite coatings based on low-temperature calcium phosphates for intraosseous implants, Inorg. Mater.: Appl. Res., 2018, vol. 9, pp. 88–91. https://doi.org/10.1134/S2075113318010021

    Article  Google Scholar 

  7. Suzuki, O., Nakamura, M., Miyasaka, Y., Kagayama, M., and Sakurai, M., Maclura pomifera agglutinin-binding glycoconjugates on converted apatite from synthetic octacalcium phosphate implanted into subperiosteal region of mouse calvaria, Bone Miner., 1993, vol. 20, pp. 151–166.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki, O., Kamakura, S., Katagiri, T., Nakamura, M., Zhao, B., Honda, Y., et al., Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite, Biomaterials, 2006, vol. 27, pp. 2671–2681.

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki, O., Kamakura, S., and Katagiri, T., Surface chemistry and biological responses to synthetic octacalcium phosphate, J. Biomed. Mater. Res., 2006, vol. 77, pp. 201–212.

    Article  CAS  Google Scholar 

  10. Elliott, J.C., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Amsterdam: Elsevier Sci., 1994, pp. 13–20.

    Google Scholar 

  11. Bjerrum, N., Calcium orthophosphate. I. Die Festen Calciumorthophosphate. II. Komplexbildung in Lösung von Calcium-und Phosphate-Ionen, Mat.-Fys. Medd. – K. Dan. Vidensk. Selsk., 1958, vol. 31, pp. 1–79.

    Google Scholar 

  12. Berzelius, J.J., Lehrbruch der Chemie, Dresden–Leipzig: Arnoldischen Buchhandlung, 1836, p. 274.

  13. Rodrigues, A. and Lebugle, A., Behavior in wet atmosphere of an amorphous calcium phosphate with an atomic Ca/P ratio of 1.33, J. Solid State Chem., 1999, vol. 148, pp. 308–315.

    Article  CAS  Google Scholar 

  14. Zahidi, E., Lebugle, A., and Bonel, G., On a new class of biomaterials for osseous or dental prosthesis, Bull. Soc. Chim. Fr., 1985, vol. 4, pp. 523–527.

    Google Scholar 

  15. Hayek, E., Die mineralsubstanz der knochen, Klin. Wochenschr., 1967, vol. 45, pp. 857–863.

    Article  CAS  PubMed  Google Scholar 

  16. Shen, D., Horiuchi, N., Nozaki, S., and Miyashin, M., Synthesis and enhanced bone regeneration of carbonate substituted octacalcium phosphate, Biomed. Mater. Eng., 2017, vol. 28, pp. 9–21.

    CAS  PubMed  Google Scholar 

  17. Mathew, M., Brown, W.E., Schroeder, L.W., and Dickens, B., Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8(HPo4)2(PO4)4 ⋅ 5H2O, J. Cryst. Spectrosc. Res., 1988, vol. 18, pp. 235–250.

    Article  CAS  Google Scholar 

  18. Suzuki, O., Octacalcium phosphate: Osteoconductivity and crystal chemistry, Acta Biomater., 2010, vol. 6, pp. 3379–3387.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki, O., Yagishita, H., Amano, T., and Aoba, T., Reversible structural changes of octacalcium phosphate and labile acid phosphate, J. Dent. Res., 1995, vol. 11, pp. 1764–1769.

    Article  Google Scholar 

  20. Brown, W.E., Octacalcium phosphate and hydroxyapatite: Crystal structure of octacalcium phosphate, Nature, 1962, vol. 196, pp. 1048–1055.

    Article  CAS  Google Scholar 

  21. Rey, C.C., Combes, C., and Drouet, C., Synthesis and physical chemical characterizations of octacalcium phosphate-based biomaterials for hard-tissue regeneration, in Octacalcium Phosphate Biomaterials: Understanding of Bioactive Properties and Application, Suzu-ki, O. and Insley, G., Eds., Woodhead, 2019, ch. 8, p. 179. https://doi.org/10.1016/C2017-0-01051-0

    Book  Google Scholar 

  22. Terpstra, R.A. and Bennema, P., Crystal morphology of octacalcium phosphate: Theory and observation, J. Cryst. Growth, 1987, vol. 82, pp. 416–426.

    Article  CAS  Google Scholar 

  23. Brown, W.E., Mathew, M., and Chow, L.C., Roles of octacalcium phosphate in surface chemistry of apatites, in Adsorption and Surface Chemistry of Hydroxyapatite, Misra, D.N., Ed., New York: Plenum, 1984, pp. 13–28.

    Google Scholar 

  24. Monma, H. and Goto, M., Succinate-complexed octacalcium phosphate, Bull. Chem. Soc. Jpn., 1983, vol. 56, pp. 38–43.

    Article  Google Scholar 

  25. Monma, H., The incorporation of dicarboxylates into octacalcium bis(hydrogenphosphate) tetrakis(phosphate) pentahydrate, Bull. Chem. Soc. Jpn., 1984, vol. 57, pp. 599–600.

    Article  CAS  Google Scholar 

  26. Markovic, M., Octacalcium phosphate carboxylates, in Octacalcium Phosphate, Chow, L.C. and Eanes, E.D., Eds., Basel: Karger, 2001, pp. 77–93.

    Google Scholar 

  27. Li, Y., Reid, D.G., Duer, M.J., and Chan, J.C., Solid state NMR – an indispensable tool in organic-inorganic biocomposite characterization; refining the structure of octacalcium phosphate composites with the linear metabolic di-acids succinate and adipat, Solid State Nucl. Magn. Reson., 2018, vol. 95, pp. 1–5. https://doi.org/10.1016/j.ssnmr.2018.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davies, E., Muller, K.H., Wong, W.C., Pickard, C.J., Reid, D.G., Skepper, J.N., et al., Citrate bridges between mineral platelets in bone, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 1354–1363.

    Google Scholar 

  29. Tung, M.S. and Brown, W.E., An intermediate state in hydrolysis of amorphous calcium phosphate, Calcif. Tissue Int., 1983, vol. 35, pp. 783–790.

    Article  CAS  PubMed  Google Scholar 

  30. Eanes, E.D. and Meyer, J.L., The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH, Calcif. Tissue Int., 1977, vol. 23, pp. 259–269.

    Article  CAS  Google Scholar 

  31. Rey, C., Combes, C., Drouet, D., Bertrand, G., and Soulie, J., Bioactive calcium phosphates compounds: Physical chemistry, in Comprehensive Biomaterials II, Ducheyne, P., Grainger, D.W., Healy, K.E., Hutmacher, D.W., and Kirkpatrick, C.J., Eds., Oxford: Elsevier, 2017, vol. 1. pp. 244–290.

    Google Scholar 

  32. Nelson, D.G., Wood, G.J., Barry, J.C., and Featherstone, J.D., The structure of (001) defects in carbonated apatite crystallites – a high-resolution electron microscope study, Ultramicroscopy, 1986, vol. 19, pp. 253–265.

    Article  CAS  PubMed  Google Scholar 

  33. Montel, G., Bonel, G., Heughebaert, J.C., Trombe, J.C., and Rey, C., New concepts in the composition, crystallization and growth of the mineral component of calcified tissues, J. Cryst. Growth, 1981, vol. 53, pp. 74–99.

    Article  CAS  Google Scholar 

  34. Kerebel, B., Daculsi, G., and Kerebel, L.M., Ultrastructural studies of enamel crystallites, J. Dent. Res., 1979, vol. 58, pp. 844–851.

    Article  CAS  PubMed  Google Scholar 

  35. Nelson, D.G. and Barry, J.C., High resolution electron microscopy of nonstoichiometric apatite crystals, Anat. Tec., 1989, vol. 224, pp. 265–276.

    CAS  Google Scholar 

  36. Miake, Y., Shimoda, S., Fukae, M., and Aoba, T., Epitaxial overgrowth of apatite crystals on the thin-ribbon precursor at early stages of porcine enamel mineralization, Calcif. Tissue Int., 1993, vol. 53, pp. 249–256.

    Article  CAS  PubMed  Google Scholar 

  37. Tohda, H., Yamada, M., Yamaguchi, Y., and Yanagisawa, T., High-resolution election microscopical observations of initial enamel crystals, J. Electron Microsc., 1997, vol. 46, pp. 97–101.

    Article  Google Scholar 

  38. Heughebaert, J.C. and Nancollas, G.H., Kinetics of crystallization of octacalcium phosphate, J. Phys. Chem., 1984, vol. 88, pp. 2478–2481.

    Article  CAS  Google Scholar 

  39. Freche, M. and Heughebaert, J.C., Calcium phosphate precipitation in the 60–80°C range, J. Cryst. Growth, 1989, vol. 94, pp. 947–954.

    Article  CAS  Google Scholar 

  40. Salimi, M.H., Heughebaert, J.C., and Nancollas, G.H., Cristal growth of calcium phosphates in the presence of magnesium ions, Langmuir, 1985, vol. 1, pp. 119–122.

    Article  CAS  Google Scholar 

  41. LeGeros, R.Z., Kijkowska, R., and LeGeros, J.P., Formation and transformation of octacalcium phosohate, OCP: A preliminary report, Scanning Electron Microsc., 1984, vol. 4, pp. 1771–1777.

    Google Scholar 

  42. Moriwaki, Y., Doi, Y., Kani, T., Aoba, T., Takahashi, J., and Okazaki, M., Synthesis of enamel-like apatite at physiological temperature and pH using ion-selective membranes, in Mechanisms of Tooth Enamel Formation, Tokyo: Quintessence, 1983, pp. 239–256.

    Google Scholar 

  43. Iijima, M. and Moriwaki, Y., Effects of inorganic ions on morphology of octacalcium phosphate grown on cation selective membrane at physiological temperature and pH in relation to enamel formation, J. Cryst. Growth, 1989, vol. 96, pp. 59–64.

    Article  CAS  Google Scholar 

  44. Tung, M.S., Eidelman, N., Siech, B., and Brown, W.E., Octacalcium phosphate solubility product from 4 to 37°C, J. Res. Natl. Bur. Stand., 1988, vol. 93, pp. 613–624.

    Article  CAS  Google Scholar 

  45. Shyu, L.J., Perez, L., Zawacki, S.J., Heughebaert, J.C., and Nancollas, G.H., The solubility of octacalcium phosphate an 37°C in the system Ca(OH)2–H3PO4–KNO3–H2O, J. Dent. Res., 1983, vol. 8, pp. 676–679.

    Google Scholar 

  46. Heughebaert, J.C. and Nancollas, G.H., Solubility of octacalcium phosphate an 25°C and 45°C in the system Ca(OH)2–H3PO4–KNO3–H2O, J. Chem. Eng. Data, 1985, vol. 30, pp. 279–281.

    Article  CAS  Google Scholar 

  47. Zhang, J. and Nancollas, G.H., Kinetics and mechanisms of octacalcium phosphate dissolution at 37°C, J. Phys. Chem., 1992, vol. 96, pp. 5478–5483.

    Article  CAS  Google Scholar 

  48. Brown, W.E., Lehr, J.R., Smith, J.P., and Frazier, A.W., Crystallography of octacalcium phosphate, J. Am. Chem. Soc., 1957, vol. 79, pp. 5318–5319. https://doi.org/10.1021/ja01576a068

    Article  CAS  Google Scholar 

  49. Nelson, D.G. and McLean, J.D., High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products, Calcif. Tissue Int., 1984, vol. 36, pp. 219–232.

    Article  CAS  PubMed  Google Scholar 

  50. Fowler, B.O., Moreno, E.C., and Brown, W.E., Infrared spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate, Arch. Oral. Biol., 1966, vol. 11, pp. 477–492.

    Article  CAS  PubMed  Google Scholar 

  51. Yesinowski, J.P. and Eckert, H., Hydrogen environments in calcium phosphates: 1H MAS NMR at high spinning speeds, J. Am. Chem. Soc., 1987, vol. 109, pp. 6274–6282.

    Article  CAS  Google Scholar 

  52. Anderson, C.W., Beebe, R.A., and Kittelberger, J.S., Programmed temperature dehydration stydies of octacalcium phosphate, J. Phys. Chem., 1974, vol. 78, pp. 1631–1635.

    Article  CAS  Google Scholar 

  53. Eichert, D., Drouet, C., Sfihi, H., Rey, C., and Combes, C., Nanocrystalline apatite-based biomaterials: Synthesis, processing and characterization, in Trends in Biomaterials Research, Pannone, P., Ed., New York: Nova Science, 2007, p. 93.

    Google Scholar 

  54. Fowler, B.O., Markovic, M., and Brown, W.E., Octacalcium phosphate. 3. Infrared and Raman vibrational spectra, Chem. Mater., 1993, vol. 5, pp. 1417–1423.

    Article  CAS  Google Scholar 

  55. Monma, H. and Moriyoshi, Y., Zeolitic dehydration-rehydration of adipate-intercalated octacalcium phosphate, J. Mater. Sci., 1990, vol. 1, pp. 21–25.

    CAS  Google Scholar 

  56. Suzuki, O., Octacalcium phosphate: Osteoconductivity and crystal chemistry, Acta Biomater., 2010, vol. 6, pp. 3379–3387.

    Article  CAS  PubMed  Google Scholar 

  57. Rodrigues, A. and Lebugle, A., Influence of ethanol in the precipitation medium on the composition, structure and reactivity of tricalcium phosphate, Colloids Surf., A, 1998, vol. 145, pp. 191–204.

    Article  CAS  Google Scholar 

  58. Lebugle, A., Rodrigues, A., Bonnevialle, P., Voigt, J.J., Canal, P., and Rodriguez, F., Study of implantable calcium phosphate systems for the slow release of methotrexate, Biomaterials, 2002, vol. 23, pp. 3517–3522.

    Article  CAS  PubMed  Google Scholar 

  59. Lasserre, V., Étude de la synthèse et de la réactivité d’un phosphate de calcium en vue de son utilisation dans l’industrie pharmaceutique, Thèse de Doctorat en Science des Matériaux, Toulouse: Inst. Nat. Polytech. Toulouse, 1995, pp. 15–21.

  60. Kühl, V.G. and Nebergall, H., Hydrogenphosphat-und carbonatapatite, Z. Anorg. Allg. Chem., 1963, vol. 324, pp. 313–320.

    Article  Google Scholar 

  61. Chickerur, N.S., Tung, M.S., and Brown, W.E., A mechanism for incorporation of carbonate into apatite, Calcif. Tissue Int., 1980, vol. 62, pp. 55–62.

    Article  Google Scholar 

  62. Tung, M.S. and Brown, W.E., An intermediate state in hydrolysis of amorphous calcium phosphate, Calcif. Tissue Int., 1983, vol. 35, pp. 783–790.

    Article  CAS  PubMed  Google Scholar 

  63. Fernandez, M.E., Zorrilla-Cangas, C., Garcia-Garcia, R., Ascencioc, J.A., and Reyes-Gasga, J., New model for the hydroxyapatite-octacalcium phosphate interface, Acta. Cryst., 2003, vol. 59, pp. 175–181.

    Article  CAS  Google Scholar 

  64. Komlev, V.S., Barinov, S.M., Bozo, I.I., Deev, R.V., Eremin, I.I., Fedotov, A.Y., et al., Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior, ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 16610–16620.

    Article  CAS  PubMed  Google Scholar 

  65. Monma, H., Preparation of octacalcium phosphate by the hydrolysis of α-tricalcium phosphate, J. Mater. Sci., 1980, vol. 15, pp. 2428–2434.

    Article  Google Scholar 

  66. Monma, H. and Goto, M., Succinate-complexed octacalcium phosphate, Bull. Chem. Soc. Jpn., 1983, vol. 56, pp. 383–384.

    Article  Google Scholar 

  67. Iijima, M., Moriwaki, Y., Wen, H.B., Fincham, A.G., and Moradian-Oldak, J., Elongated growth of octacalcium phosphate crystals in recombinant amelogenin gels under controlled ionic flow, J. Dent. Res., 2002, vol. 81, pp. 69–73.

    Article  CAS  PubMed  Google Scholar 

  68. LeGeros, R.Z., Daculsi, G., Orly, I., Abergas, T., and Torres, W., Solution-mediated transformation of octacalcium phosphate (OCP) to apatite, Scanning Microsc., 1989, vol. 3, pp. 129–138.

    CAS  PubMed  Google Scholar 

  69. Newesely, H., Darstellung von “oktacalciomphosphat” (tetracalcium-hydrogentrisphosphat) duch homogene kristallisation, Monatsh. Chem., 1960, vol. 91, pp. 1020–1023.

    Article  CAS  Google Scholar 

  70. Komlev, V.S., Popov, V.K., Mironov, A.V., Fedo-tov, A.Y., Teterina, A.Y., Smirnov, I.V., et al., 3D printing of octacalcium phosphate bone substitutes, Front. Bioeng. Biotechnol., 2015, vol. 3, pp. 81–88.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chickerur, N.S., Tung, M.S., and Brown, W.E., A mechanism for incorporation of carbonate into apatite, Calcif. Tissue Int., 1980, vol. 62, pp. 55–62.

    Article  Google Scholar 

  72. Zobkov, Yu.V., Mironov, A.V., Fedotov, A.Yu., Popov, V.K., Smirnov, I.V., Barinov, S.M., and Komlev, V.S., In situ formation of porous mineral–polymer scaffold for tissue engineering, Dokl. Chem., 2017, vol. 474, pp. 126–128.

    Article  CAS  Google Scholar 

  73. Fedotov, A.Yu., Barinov, S.M., Ievlev, V.M., Sirotinkin, V.P., Soldatenko, S.A., and Komlev, V.S., Formation of composite scaffolds based on chitosan and calcium phosphate, Dokl. Chem., 2016, vol. 469, pp. 215–218.

    Article  CAS  Google Scholar 

  74. Arellano-Jimenez, M.J., Garcia-Garcia, R., and Reyes-Gasga, J., Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction, J. Phys. Chem. Solids, 2009, vol. 70, pp. 390–395.

    Article  CAS  Google Scholar 

  75. Rau, J.V., Komlev, V.S., Generosi, A., Fosca, M., Albertini, V.R., and Barinov, S.M., In situ time resolved X-ray diffraction study of octacalcium phosphate transformations under physiological conditions, J. Cryst. Growth, 2010, vol. 312, pp. 2113–2116.

    Article  CAS  Google Scholar 

  76. Sugiura, Y. and Ishikawa, K., Fabrication of pure octacalcium phosphate blocks from dicalcium hydrogen phosphate dihydrate blocks via a dissolution precipitation reaction in a basic solution, Mater. Lett., 2019, vol. 239, pp. 143–146.

    Article  CAS  Google Scholar 

  77. Gee, A. and Dietz, V.R., Pyrophosphate formation upon ignition of precipitated basic calcium phosphate, J. Am. Chem. Soc., 1955, vol. 77, pp. 2961–2965.

    Article  CAS  Google Scholar 

  78. Mukherjee, S., Cancan, H., Guerra, F., Wang, K., and Oldfield, E., Thermodynamics of bisphosphonates binding to human bone: A two-site model, J. Am. Chem. Soc., 2009, vol. 131, pp. 837–845.

    Article  CAS  Google Scholar 

  79. Tseng, Y., Mou, C., and Chan, J.C.C., Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation, J. Am. Chem. Soc., 2006, vol. 128, pp. 6909–6918.

    Article  CAS  PubMed  Google Scholar 

  80. Kokubo, T. and Takadama, H., How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, vol. 27, pp. 2907–2915.

    Article  CAS  PubMed  Google Scholar 

  81. Cazalbou, S., Combes, C., Eichert, D., Rey, C., and Glimcher, M.J., Poorly crystalline apatites: Evolution and maturation in vitro and in vivo, J. Bone Miner. Metab., 2004, vol. 22, pp. 310–317.

    Article  PubMed  Google Scholar 

  82. Kumar, P.S., Grandhi, V.V., and Gupta, V., The effects of titanium implant surface topography on osseointegration: Literature review, JMIR Biomed. Eng., 2019, vol. 4, pp. 132–137.

    Article  Google Scholar 

  83. Vahabzadeh, S., Roy, M., Bandyopadhyay, A., and Bose, S., Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications, Acta Biomater., 2015, vol. 17, pp. 47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mohseni, E., Zalnezhad, E., and Bushroa, A.R., Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper, Int. J. Adhes. Adhes., 2014, vol. 48, pp. 238–257.

    Article  CAS  Google Scholar 

  85. Dekker, R.J., Bruijn, J.D., Stigter, M., Barrere, F., Layrolle, P., and Blitterswijk, C.A., Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs, Biomaterials, 2005, vol. 26, pp. 5231–5239.

    Article  CAS  PubMed  Google Scholar 

  86. Jiang, P., Liang, J., Song, R., Zhang, Y., Ren, L., Zhang, L., and Lin, C., Effect of octacalcium-phosphate-modified micro/nanostructured titania surfaces on osteoblast response, ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 14384–14396.

    Article  CAS  PubMed  Google Scholar 

  87. Suzuki, O., Octacalcium phosphate (OCP)-based bone substitute materials, Jpn. Dent. Sci. Rev., 2013, vol. 49, pp. 58–71.

    Article  Google Scholar 

  88. Smirnov, I.V., Rau, J.V., Fosca, M., De Bonis, A., Latini, A., Teghil, R., Kalita, V.I., Fedotov, A.Yu., Gudkov, S.V., Baranchikov, A.E., and Komlev, V.S., Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment, Bioact. Mater., 2017, vol. 2, pp. 101–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, W.E., Crystal growth of bone mineral, Clin. Orthop. Relat. Res., 1966, vol. 44, pp. 205–220.

  90. Nylen, M.U., Eanes, E.D., and Omnell, K.A., Crystal growth in rat enamel, J. Cell Biol., 1963, vol. 18, pp. 109–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McGregor, J. and Brown, W.E., Blood-bone equilibrium in calcium homeostasis, Nature, 1965, vol. 205, pp. 359–361.

    Article  Google Scholar 

  92. Eanes, E.D., Crystal growth of mineral phases in skeletal tissues, Prog. Cryst. Growth Charact., 1980, vol. 3, pp. 3–15.

    Article  CAS  Google Scholar 

  93. Christoffersen, J., Christoffersen, M.R., and Kibalczyc, W., Apparent solubilities of two amorphous calcium phosphates and of octacalcium phosphate in the temperature range 30–42°C, J. Cryst. Growth, 1990, vol. 106, pp. 349–354.

    Article  CAS  Google Scholar 

  94. Christoffersen, J., Christoffersen, M.R., Kibalczyc, W., and Andersen, A., A contribution to the understanding of the formation of calcium phosphates, J. Cryst. Growth, 1989, vol. 94, pp. 767–777.

    Article  CAS  Google Scholar 

  95. Combes, C. and Rey, C., Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials, Acta Biomater., 2010, vol. 6, pp. 3362–3378.

    Article  CAS  PubMed  Google Scholar 

  96. Miyatake, N., Kishimoto, K.N., Anada, T., Imaizumi, H., Itoi, E., and Suzuki, O., Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics, Biomaterials, 2009, vol. 30, pp. 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  97. Kobayashi, K., Anada, T., Handa, T., Kanda, N., Yoshinari, M., Takahashi, T., et al., Osteoconductive property of a mechanical mixture of octacalcium phosphate and amorphouscalcium phosphate, ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 22602–22611.

    Article  CAS  PubMed  Google Scholar 

  98. Brown, W.E., Mathew, M., and Tung, M.S., Crystal chemistry of octacalcium phosphate, Prog. Cryst. Growth Charact., 1981, vol. 4, pp. 59–87.

    Article  CAS  Google Scholar 

  99. Suzuki, O., Yagishita, H., Yamazaki, M., and Aoba, T., Adsorption of bovine serum albumin onto octacalcium phosphate and its hydrolyzates, Cells Mater., 1995, vol. 5, pp. 45–54.

    CAS  Google Scholar 

  100. Masuda, T., Maruyama, H., Arai, F., Anada, T., Tsuchiya, K., Fukuda, T., et al., Application of an indicator-immobilized-gel-sheet for measuring the pH surrounding a calcium phosphate-based biomaterial, J. Biomater. Appl., 2017, vol. 31, pp. 1296–1304.

    Article  CAS  PubMed  Google Scholar 

  101. Anada, T., Kumagai, T., Honda, Y., Masuda, T., Kamijo, R., Kamakura, S., et al., Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells, Tissue Eng., Part A, 2008, vol. 14, pp. 965–978.

    Article  CAS  Google Scholar 

  102. Takami, M., Mochizuki, A., Yamada, A., Tachi, K., Zhao, B., Miyamoto, Y., et al., Osteoclast differentiation induced by synthetic octacalcium phosphate through RANKL expression in osteoblasts, Tissue Eng., Part A, 2009, vol. 15, pp. 3991–4000.

    Article  CAS  Google Scholar 

  103. Hirayama, B., Anada, T., Shiwaku, Y., Miyatake, N., Tsuchiya, K., Nakamura, M., et al., Immune cell response and subsequent bone formation induced by implantation of octacalcium phosphate in a rat tibia defect, RSC Adv., 2016, vol. 6, pp. 57475–57484.

    Article  CAS  Google Scholar 

  104. Sai, Y., Shiwaku, Y., Anada, T., Tsuchiya, K., Takahashi, T., and Suzuki, O., Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro, Acta Biomater., 2018, vol. 69, pp. 362–371.

    Article  CAS  PubMed  Google Scholar 

  105. Nishikawa, R., Anada, T., Ishiko-Uzuka, R., and Suzuki, O., Osteoblastic differentiation of stromal ST-2 cells from octacalcium phosphate exposure via p38 signaling pathway, Dent. Mater. J., 2014, vol. 33, pp. 242–251.

    Article  CAS  PubMed  Google Scholar 

  106. Marotti, G., Ferretti, M., Muglia, M.A., Palumbo, C., and Palazzani, S.A., A quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae, Bone, 1992, vol. 13, pp. 363–368.

    Article  CAS  PubMed  Google Scholar 

  107. Dallas, S.L. and Bonewald, L., Dynamics of the transition from osteoblast to osteocyte, Ann. N.Y. Acad. Sci., 2010, vol. 1192, pp. 437–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Imaizumi, H., Sakurai, M., Kashimoto, O., Kikawa, T., and Suzuki, O., Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow, Calcif. Tissue Int., 2006, vol. 78, pp. 45–54.

    Article  CAS  PubMed  Google Scholar 

  109. Suzuki, O., Evolution of octacalcium phosphate biomaterials, in Octacalcium Phosphate Biomaterials Understanding of Bioactive Properties and Application, Suzuki, O. and Insley, G., Eds., Chennai: Woodhead, 2020, p. 349.

    Google Scholar 

  110. Kawai, T., Echigo, S., Matsui, K., Tanuma, Y., Takahashi, T., Suzuki, O., et al., First clinical application of octacalcium phosphate collagen composite in human bone defect, Tissue Eng., Part A, 2014, vol. 20, pp. 1336–1341.

    Article  CAS  Google Scholar 

  111. Bozo, I.Y., Deev, R.V., Smirnov, I.V., Fedotov, A.Yu., Popov, V.K., Mironov, A.V., Mironova, O.A., Gerasimenko, A.Yu., and Komlev, V.S., 3D printed gene-activated octacalcium phosphate Implants for large bone defects engineering, Int. J. Bioprint., 2020, vol. 6, no. 3, art. ID 275. https://doi.org/10.18063/ijb.v6i3.275

  112. Bozo, I.Y., Drobyshev, A.Y., Redko, N.A., Komlev, V.S., Isaev, A.A. and Deev, R.V., Bringing a gene-activated bone substitute into clinical practice: From bench to bedside, Front. Bioeng. Biotechnol., 2021, vol. 9, art. ID 599300. https://doi.org/10.3389/fbioe.2021.599300

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 19-13-50484 “Expansion.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Fedotov.

Additional information

Translated by S. Kuznetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, A.Y., Komlev, V.S. Review of Octacalcium Phosphate Materials for Bone Tissue Engineering. Inorg. Mater. Appl. Res. 13, 985–1004 (2022). https://doi.org/10.1134/S2075113322040141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322040141

Keywords:

Navigation