Skip to main content
Log in

Enhancement of dielectric properties by modulating electroactive \(\varvec{\beta }\)-phase of copper doped nickel oxide nanoparticles incorporated thin film

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer nanocomposites (PNCs), exhibiting enhanced physical properties, are emerging as innovative functional materials due to their versatile characteristics suitable for various technological applications. Composite films comprising 0.1% copper (Cu) doped Nickel oxide (NiO) [CNO1 (350)] nanoflakes calcined at 350 °C embedded in Poly (vinylidene fluoride) (PVDF) polymer were prepared using the solution casting method. The influence of CNO1 (350) filler incorporation on the structure and morphology of the composite films was scrutinized through X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (FESEM). Results unveiled a direct correlation between CNO1 (350) filler concentration and the crystallinity, β-phase content, and morphology of the composite films, attributed to heterogeneous nucleation. Room temperature electrical measurements indicated dielectric constants reaching more than six times at 40 Hz and a conductivity increase exceeding two orders of magnitude, with a percolation threshold identified around 25wt% of CNO1 (350) filler content. The observed outcomes are elucidated through Maxwell–Wagner–Sillars interfacial polarization occurring at the interface of CNO1 (350) and the insulating polymer matrix. This elucidation involves the development of a conductive network and the establishment of a micro-capacitive structure within the PVDF thin films modified with CNO1 (350).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data should be available on request. 

References

  1. Sau S, Kundu M, Biswas S et al (2024) Tailoring ZnMnO3 nanostructures: a promising strategy for high energy density asymmetric supercapacitors. J Energy Storage 85:111069. https://doi.org/10.1016/j.est.2024.111069

    Article  Google Scholar 

  2. Kundu M, Mondal D, Mondal I et al (2023) A rational preparation strategy of phase tuned MoO3 nanostructures for high-performance all-solid asymmetric supercapacitor. J Energy Chem 87:192–206. https://doi.org/10.1016/j.jechem.2023.08.014

    Article  CAS  Google Scholar 

  3. Chen T, Tang Q, Wang B et al (2015) Dielectric and magnetic properties of poly (vinylidene fluoride) composites doped with pomegranate-like PPY@NiFe2O4 nanospheres. Mater Lett 159:413–416. https://doi.org/10.1016/j.matlet.2015.07.050

    Article  CAS  Google Scholar 

  4. Du Pasquier A, Warren PC, Culver D et al (2000) Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ionics 135:249–257. https://doi.org/10.1016/S0167-2738(00)00371-4

    Article  CAS  Google Scholar 

  5. Johnsi M, Suthanthiraraj SA (2016) Compositional effect of ZrO2 nanofillers on a PVDF-co-HFP based Polymer electrolyte system for solid state zinc batteries. Chin J Polym Sci (English Ed 34:332–343. https://doi.org/10.1007/s10118-016-1750-3

    Article  CAS  Google Scholar 

  6. Henderson WA, Brooks NR, Young VG (2003) Single-crystal structures of polymer electrolytes. J Am Chem Soc 125:12098–12099. https://doi.org/10.1021/ja036535k

    Article  CAS  PubMed  Google Scholar 

  7. Page SEEL (2006) A dielectric polymer with. Synthesis (Stuttg) 313:2–5

    Google Scholar 

  8. Li N, Huang Y, Du F et al (2006) ) < Nano letters 6 issue 6 2006 [doi 10.102.pdf>. Nano Lett 6:1–5

    CAS  Google Scholar 

  9. Twinkle, Kaur M, Gowsamy JK et al (2020) Synthesis and characterization of CNT/PVDF paper for electronic and energy storage applications. Emergent Mater 3:181–185. https://doi.org/10.1007/s42247-020-00074-5

    Article  CAS  Google Scholar 

  10. Saxena P, Shukla P (2021) A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv Compos Hybrid Mater 4:8–26. https://doi.org/10.1007/s42114-021-00217-0

    Article  CAS  Google Scholar 

  11. Zhou W, Chen Q, Sui X et al (2015) Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Compos Part Appl Sci Manuf 71:184–191. https://doi.org/10.1016/j.compositesa.2015.01.024

    Article  CAS  Google Scholar 

  12. Zirkl M, Sawatdee A, Helbig U, Krause M, Scheipl G, Kraker E, Ersman PA, Nilsson D, Platt D, Bodö P, Bauer S, Domann G, Stadlober B (2011) An All-Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface. Adv. Mater. 23:2069–2074. https://doi.org/10.1002/adma.201100054

    Article  CAS  PubMed  Google Scholar 

  13. Wu G, Cheng Y, Wang Z et al (2017) In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J Mater Sci Mater Electron 28:576–581. https://doi.org/10.1007/s10854-016-5560-8

    Article  CAS  Google Scholar 

  14. Yu J, Huang X, Wu C et al (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polym (Guildf) 53:471–480. https://doi.org/10.1016/j.polymer.2011.12.040

    Article  CAS  Google Scholar 

  15. Aliane A, Benwadih M, Bouthinon B et al (2015) Impact of crystallization on ferro-, piezo- and pyro-electric characteristics in thin film P(VDF-TrFE). Org Electron 25:92–98. https://doi.org/10.1016/j.orgel.2015.06.007

    Article  CAS  Google Scholar 

  16. Li ZM, Li L, Bin, Shen KZ et al (2004) In-situ microfibrillar PET/iPP blend via slit die extrusion, hot stretching, and quenching: influence of hot stretch ratio on morphology, crystallization, and crystal structure of iPP at a fixed PET concentration. J Polym Sci Part B Polym Phys 42:4095–4106. https://doi.org/10.1002/polb.20262

    Article  CAS  Google Scholar 

  17. Zhang Z, Cui S, Ma R et al (2023) Melt stretching and quenching produce low-crystalline biodegradable poly(lactic acid) filled with β-form shish for highly improved mechanical toughness. Int J Biol Macromol 251:126220. https://doi.org/10.1016/j.ijbiomac.2023.126220

    Article  CAS  PubMed  Google Scholar 

  18. Chakraborty T, Sharma S, Debnath T et al (2021) Fabrication of heterostructure composites of Ni-Zn-Cu-Ferrite-C3N4-Poly(vinylidene fluoride) films for the enhancement of electromagnetic interference shielding effectiveness. Chem Eng J 420:127683. https://doi.org/10.1016/j.cej.2020.127683

    Article  CAS  Google Scholar 

  19. Chakraborty T, Dutta S, Mahapatra AS et al (2023) Superior EMI shielding effectiveness of light weight and stretchable X-type hexaferrite-poly(vinylidene fluoride) laminated nanocomposite materials. J Magn Magn Mater 570:170508. https://doi.org/10.1016/j.jmmm.2023.170508

    Article  CAS  Google Scholar 

  20. Saha S, Chakraborty T, Saha A et al (2024) A multi-layer design of hexaferrite decorated graphene derivatives incorporated PVDF nanocomposite films; understanding the role of GO/rGO for outstanding electromagnetic wave absorption at microwave frequencies. Carbon N Y 220:118829. https://doi.org/10.1016/j.carbon.2024.118829

    Article  CAS  Google Scholar 

  21. Mishra S, Sahoo R, Unnikrishnan L et al (2020) Effect of multi-step processing on the structural, morphological and dielectric behaviour of PVDF films. Ionics (Kiel) 26:6069–6081. https://doi.org/10.1007/s11581-020-03770-8

    Article  CAS  Google Scholar 

  22. Crespi F, Gavagnin G, Sánchez D, Martínez GS (2017) Supercritical carbon dioxide cycles for power generation: a review. Appl Energy 195:152–183. https://doi.org/10.1016/j.apenergy.2017.02.048

    Article  CAS  Google Scholar 

  23. Jayakumar OD, Abdelhamid EH, Kotari V et al (2015) Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles. Dalt Trans 44:15872–15881. https://doi.org/10.1039/c5dt01509j

    Article  CAS  Google Scholar 

  24. Saha P, Debnath T, Das S et al (2019) β-Phase improved Mn-Zn-Cu-ferrite-PVDF nanocomposite film: A metamaterialfile:///E:/PhD File/Paper II (Film)/Communication Related documents/Journal of Polymer Research 19.12.23/Response to Reviewer/Reference/S.Sutradhar1-s2.0-S0921510719301230-main.pdf f. Mater Sci Eng B 245:17–29. https://doi.org/10.1016/j.mseb.2019.05.006

    Article  CAS  Google Scholar 

  25. Alvarez-Sanchez CO, Lasalde-Ramírez JA, Ortiz-Quiles EO et al (2019) Polymer-MTiO3 (M = ca, Sr, Ba) composites as facile and scalable supercapacitor separators. Energy Sci Eng 7:730–740. https://doi.org/10.1002/ese3.299

    Article  CAS  Google Scholar 

  26. Paul BK, Roy D, Manna S et al (2018) High dielectric response of cobalt aluminate mullite (CAM) nanocomposite over cobalt aluminate mullite polymer (CAMP) nanocomposite in PVDF matrix. J Electroceram 40:347–359. https://doi.org/10.1007/s10832-018-0136-z

    Article  CAS  Google Scholar 

  27. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanoparticle Res 13:4519–4528. https://doi.org/10.1007/s11051-011-0406-z

    Article  CAS  Google Scholar 

  28. Sarkar D, Bhattacharya A, Nandy P, Das S (2014) Enhanced broadband microwave reflection loss of carbon nanotube ensheathed Ni-Zn-Co-ferrite magnetic nanoparticles. Mater Lett 120:259–262. https://doi.org/10.1016/j.matlet.2014.01.089

    Article  CAS  Google Scholar 

  29. Yang Y, Li Z, Ji W et al (2018) Enhanced dielectric properties through using mixed fillers consisting of nano-barium titanate/nickel hydroxide for polyvinylidene fluoride based composites. Compos Part Appl Sci Manuf 104:24–31. https://doi.org/10.1016/j.compositesa.2017.10.024

    Article  CAS  Google Scholar 

  30. Dutta B, Kar E, Sen G et al (2020) Lightweight, flexible NiO@SiO2/PVDF nanocomposite film for UV protection and EMI shielding application. Mater Res Bull 124:110746. https://doi.org/10.1016/j.materresbull.2019.110746

    Article  CAS  Google Scholar 

  31. Dutta B, Kar E, Bose N, Mukherjee S (2018) NiO@SiO2/PVDF: a flexible polymer nanocomposite for a high performance human body motion-based Energy Harvester and Tactile e-Skin Mechanosensor. ACS Sustain Chem Eng 6:10505–10516. https://doi.org/10.1021/acssuschemeng.8b01851

    Article  CAS  Google Scholar 

  32. Roy D, Bagchi B, Das S, Nandy P (2013) Electrical and dielectric properties of sol-gel derived mullite doped with transition metals. Mater Chem Phys 138:375–383. https://doi.org/10.1016/j.matchemphys.2012.11.070

    Article  CAS  Google Scholar 

  33. Bhattacharya D, Ghoshal D, Mondal D et al (2019) Visible light driven degradation of brilliant green dye using titanium based ternary metal oxide photocatalyst. Results Phys 12:1850–1858. https://doi.org/10.1016/j.rinp.2019.01.065

    Article  Google Scholar 

  34. Mondal D, Paul BK, Bhattacharya D et al (2021) Copper-doped α-MnO2nano-sphere: metamaterial for enhanced supercapacitor and microwave shielding applications. J Mater Chem C 9:5132–5147. https://doi.org/10.1039/d0tc06085b

    Article  CAS  Google Scholar 

  35. Das S, Das S, Sutradhar S (2017) Effect of Gd3 + and Al3 + on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceram Int 43:6932–6941. https://doi.org/10.1016/j.ceramint.2017.02.116

    Article  CAS  Google Scholar 

  36. Ibos L, Bernes A, Teyssedre G et al (2000) Correlation between pyroelectric properties and dielectric behaviour in ferroelectric polymers. Ferroelectrics 238:163–170. https://doi.org/10.1080/00150190008008780

    Article  Google Scholar 

  37. Xia W, Xu Z, Zhang Q et al (2012) Dependence of dielectric, ferroelectric, and piezoelectric properties on crystalline properties of p(VDF-co-TrFE) copolymers. J Polym Sci Part B Polym Phys 50:1271–1276. https://doi.org/10.1002/polb.23125

    Article  CAS  Google Scholar 

  38. Lovinger AJ (1983) Ferroelectric Transition in a Copolymer of Vinylidene Fluoride and Tetrafluoroethylene. Macromolecules 16:1529–1534. https://doi.org/10.1021/ma00243a021

    Article  CAS  Google Scholar 

  39. Biswas S, Saha Y, Mondal I et al (2023) Synergistic approach for enhancement of optical and electrical dielectric properties of size-tunable Cu doped NiO semiconductor quantum nanoflakes. Curr Appl Phys 56:66–78. https://doi.org/10.1016/j.cap.2023.10.002

    Article  Google Scholar 

  40. Thakur P, Kool A, Hoque NA et al (2018) Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 44:456–467. https://doi.org/10.1016/j.nanoen.2017.11.065

    Article  CAS  Google Scholar 

  41. Meng N, Zhu X, Mao R et al (2017) Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. J Mater Chem C 5:3296–3305. https://doi.org/10.1039/c7tc00162b

    Article  CAS  Google Scholar 

  42. Sun GW, Jin MJ, Liu QY et al (2023) Unveiling the enhancement essence on Li2S deposition by the polarized topological β-polyvinylidene fluoride: beyond built-in electric field effect. Chem Eng J 453:139752. https://doi.org/10.1016/j.cej.2022.139752

    Article  CAS  Google Scholar 

  43. Choi KH, Cho SJ, Kim SH et al (2014) Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv Funct Mater 24:44–52. https://doi.org/10.1002/adfm.201301345

    Article  CAS  Google Scholar 

  44. Praveen H, Chandran VG (2023) Effects of doping nickel oxide in dilelectric property and electrical conductivity of poly (O-toluidine). J Mater Sci Mater Electron 34:1–10. https://doi.org/10.1007/s10854-023-10884-y

    Article  CAS  Google Scholar 

  45. Huang L, Wang Y, Zhu X et al (2021) Mg-Doped nickel oxide as efficient hole-transport layer for Perovskite Photodetectors. J Phys Chem C 125:16066–16074. https://doi.org/10.1021/acs.jpcc.1c04888

    Article  CAS  Google Scholar 

  46. Parangusan H, Ponnamma D, Almaadeed MAA (2018) Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe-ZnO nanocomposites for self-powering devices. Soft Matter 14:8803–8813. https://doi.org/10.1039/c8sm01655k

    Article  CAS  PubMed  Google Scholar 

  47. Mondal I, Saha Y, Halder P et al (2023) Synchronization of theoretical and experimental studies on the enriched optical and dielectric properties of size modulated CoCr2O4 quantum dots. Solid State Sci 146:107342. https://doi.org/10.1016/j.solidstatesciences.2023.107342

    Article  CAS  Google Scholar 

  48. Mondal D, Das S, Paul BK et al (2019) Size engineered Cu-doped α-MnO 2 nanoparticles for exaggerated photocatalytic activity and energy storage application. Mater Res Bull 115:159–169. https://doi.org/10.1016/j.materresbull.2019.03.023

    Article  CAS  Google Scholar 

  49. Rozana MD, Arshad AN, Wahid MH et al (2012) Dielectric constant of PVDF/MgO nanocomposites thin films. ISBEIA 2012 - IEEE Symp Business. Eng Ind Appl. https://doi.org/10.1109/ISBEIA.2012.6422866

    Article  Google Scholar 

  50. Sharma M, Gaur A, Quamara JK (2020) Swift heavy ions irradiated PVDF/BaTiO3 film as a separator for supercapacitors. Solid State Ionics 352:115342. https://doi.org/10.1016/j.ssi.2020.115342

    Article  CAS  Google Scholar 

  51. Dutta B, Bose N, Kar E et al (2017) Smart, lightweight, flexible NiO/poly(vinylidene flouride) nanocomposites film with significantly enhanced dielectric, piezoelectric and EMI shielding properties. J Polym Res 24:220. https://doi.org/10.1007/s10965-017-1396-z

    Article  CAS  Google Scholar 

  52. Thakur P, Kool A, Bagchi B et al (2015) The role of cerium(iii)/yttrium(iii) nitrate hexahydrate salts on electroactive β phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films. RSC Adv 5:28487–28496. https://doi.org/10.1039/c5ra03524d

    Article  CAS  Google Scholar 

  53. Rajeh A, Althobaiti HA, Almehmadi SJ et al (2023) Alteration in the Structural, Optical, Thermal, Electrical, and Dielectric properties of PMMA/PVDF blend by Incorporation of Ni/ZnO Nanohybrid for Optoelectronic and Energy Storage Devices. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02880-w

    Article  Google Scholar 

  54. Sharma M, Gaur A (2021) Fabrication of PVDF/BaTiO3/NiO nanocomposite film as a separator for supercapacitors. J Energy Storage 38:102500. https://doi.org/10.1016/j.est.2021.102500

    Article  Google Scholar 

  55. Mohanty HS, Ravikant, Kumar A et al (2019) Dielectric/ferroelectric properties of ferroelectric ceramic dispersed poly(vinylidene fluoride) with enhanced β-phase formation. Mater Chem Phys 230:221–230. https://doi.org/10.1016/j.matchemphys.2019.03.055

    Article  CAS  Google Scholar 

  56. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  57. Paul BK, Mondal D, Das S et al (2018) Iron-Doped, Mullite-Impregnated PVDF Composite: An Alternative Separator for a High Charge Storage Ceramic Capacitor. J. Electron. Mater. 47:7075–7084. https://doi.org/10.1007/s11664-018-6635-5

    Article  CAS  Google Scholar 

  58. Zhu L, Wang Q (2012) Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45:2937–2954. https://doi.org/10.1021/ma2024057

    Article  CAS  Google Scholar 

  59. Karasawa N, Goddard WA, Field IIF (1992) fi 5:7268–7281

    Google Scholar 

  60. Hoque NA, Thakur P, Roy S et al (2017) Er3+/Fe3 + stimulated Electroactive, visible light emitting, and high dielectric flexible PVDF Film Based Piezoelectric nanogenerators: a simple and Superior Self-Powered Energy Harvester with Remarkable Power Density. ACS Appl Mater Interfaces 9:23048–23059. https://doi.org/10.1021/acsami.7b08008

    Article  CAS  PubMed  Google Scholar 

  61. Sutradhar S, Saha P, Chowdhury A, Das S (2019) Reduction of electromagnetic pollution by the enhancement of microwave absorption of strontium hexaferrite functionalized poly(vinylidene fluoride) composite film. Mater Res Express 6:086424. https://doi.org/10.1088/2053-1591/ab1ab2

    Article  CAS  Google Scholar 

  62. S. Sutradhar, S. Saha, S. Javed, Shielding Effectiveness Study of Barium Hexaferrite-Incorporated, β-Phase-Improved Poly(vinylidene fluoride) Composite Film: A Metamaterial Useful for the Reduction of Electromagnetic Pollution (2019) ACS Appl. Mater. Interfaces 11(26):23701–23713. https://doi.org/10.1021/acsami.9b05122

    Article  CAS  Google Scholar 

  63. Chakraborty T, Sharma S, Ghosh A et al (2020) Electromagnetic shielding effectiveness of X-Type Hexaferrite-C3N4Binary Nanofiller-Incorporated Poly(vinylidene fluoride) multiphase composites. J Phys Chem C 124:19396–19405. https://doi.org/10.1021/acs.jpcc.0c05666

    Article  CAS  Google Scholar 

  64. Sizochenko N, Mikolajczyk A, Syzochenko M et al (2021) Zeta potentials (ζ) of metal oxide nanoparticles: a meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact 22:100317. https://doi.org/10.1016/j.impact.2021.100317

    Article  CAS  PubMed  Google Scholar 

  65. Iqbal J, Abbasi BA, Ahmad R et al (2020) Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus Triquetra (Wall.) And investigation of its multiple in vitro biological potentials. Biomedicines 8. https://doi.org/10.3390/BIOMEDICINES8050117

  66. Toropov AA, Sizochenko N, Toropova AP, Leszczynski J (2018) Towards the development of global nano-quantitative structure–property relationship models: Zeta potentials of metal oxide nanoparticles. Nanomaterials. https://doi.org/10.3390/nano8040243

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen S, Chen S, Qiao R et al (2021) Enhanced dielectric constant of PVDF-based nanocomposites with one-dimensional core-shell polypyrrole/sepiolite nanofibers. Compos Part Appl Sci Manuf 145:106384. https://doi.org/10.1016/j.compositesa.2021.106384

    Article  CAS  Google Scholar 

  68. Gebrekrstos A, Muzata TS, Ray SS (2022) Nanoparticle-enhanced β-Phase formation in Electroactive PVDF composites: a review of systems for Applications in Energy Harvesting, EMI shielding, and membrane technology. ACS Appl Nano Mater 5:7632–7651. https://doi.org/10.1021/acsanm.2c02183

    Article  CAS  Google Scholar 

  69. Dhatarwal P, Sengwa RJ (2019) Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26:196. https://doi.org/10.1007/s10965-019-1859-5

    Article  CAS  Google Scholar 

  70. El-Kemary M, Nagy N, El-Mehasseb I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747–1752. https://doi.org/10.1016/j.mssp.2013.05.018

    Article  CAS  Google Scholar 

  71. Kar E, Bose N, Dutta B et al (2019) Ultraviolet-and Microwave-Protecting, Self-Cleaning e-Skin for efficient energy harvesting and Tactile Mechanosensing. ACS Appl Mater Interfaces 11:17501–17512. https://doi.org/10.1021/acsami.9b06452

    Article  CAS  PubMed  Google Scholar 

  72. Bhatt AS, Bhat DK (2012) Influence of nanoscale NiO on magnetic and electrochemical behavior of PVDF-based polymer nanocomposites. Polym Bull 68:253–261. https://doi.org/10.1007/s00289-011-0628-3

    Article  CAS  Google Scholar 

  73. Ai L, Fang G, Yuan L et al (2008) Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering. Appl Surf Sci 254:2401–2405. https://doi.org/10.1016/j.apsusc.2007.09.051

    Article  CAS  Google Scholar 

  74. Biswas P, Hoque NA, Thakur P et al (2019) Highly efficient and Durable Piezoelectric Nanogenerator and Photo-power cell based on CTAB Modified Montmorillonite Incorporated PVDF Film. ACS Sustain Chem Eng 7:4801–4813. https://doi.org/10.1021/acssuschemeng.8b05080

    Article  CAS  Google Scholar 

  75. Li H, Zhang Q, Chong C et al (2019) Ac Ce pte d M us pt. Mater Today Proc 22:16–20

    Google Scholar 

  76. Theerthagiri J, Senthil RA, Buraidah MH et al (2015) Effect of tetrabutylammonium iodide content on PVDF-PMMA polymer blend electrolytes for dye-sensitized solar cells. Ionics (Kiel) 21:2889–2896. https://doi.org/10.1007/s11581-015-1464-5

    Article  CAS  Google Scholar 

  77. Liu F, Li Z, Wang Q, Xiong C (2018) High breakdown strength and low loss binary polymer blends of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) and poly(methyl methacrylate). Polym Adv Technol 29:1271–1277. https://doi.org/10.1002/pat.4238

    Article  CAS  Google Scholar 

  78. Mondal I, Halder P, Kundu M, Paul BK, Biswas S, Pal A, Sau S, Mondal D, Paul PK, Das S (2024) Energy-efficient sintering-free Chemically synthesized carbon nanofibers for high-performance supercapacitors. Materials Today Chemistry 35:101905. https://doi.org/10.1016/j.mtchem.2024.101905

    Article  CAS  Google Scholar 

  79. Manuscript A (1972) Dalton transactions. J Chem Soc Dalt Trans. https://doi.org/10.1039/D4DT00166D.Dalton

    Article  Google Scholar 

  80. Pervaiz S, Kanwal N, Hussain SA et al (2021) Study of structural, optical and dielectric properties of ZnO/PVDF-based flexible sheets. J Polym Res 28:309. https://doi.org/10.1007/s10965-021-02640-9

    Article  CAS  Google Scholar 

  81. Cao D, Zhou W, Li T et al (2021) Tailoring dielectric performance of Ni/poly(vinylidene fluoride) composites through constructing NiO shell as an interlayer. J Polym Res 28:14–16. https://doi.org/10.1007/s10965-021-02594-y

    Article  CAS  Google Scholar 

  82. Devi PI, Ramachandran K (2011) Dielectric studies on hybridised PVDF – ZnO nanocomposites. 8080. https://doi.org/10.1080/17458080.2010.497947

  83. Sahoo R, Mishra S, Ramadoss A et al (2020) Temperature-dependent dielectric properties of metal-doped ZnO nanofiller reinforced PVDF nanocomposites. Mater Res Bull 132:111005. https://doi.org/10.1016/j.materresbull.2020.111005

    Article  CAS  Google Scholar 

  84. Sahoo R, Mishra S, Unnikrishnan L et al (2020) Enhanced dielectric and piezoelectric properties of Fe-doped ZnO/PVDF-TrFE composite films. Mater Sci Semicond Process 117:105173. https://doi.org/10.1016/j.mssp.2020.105173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank the Department of Physics, Jadavpur University for the necessary infrastructural facilities. He also gratefully acknowledges the Department of Physics, Bangabasi College, University of Calcutta for their valuable support and necessary co-operation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biplab Kumar Paul or Sukhen Das.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Mondal, I., Halder, P. et al. Enhancement of dielectric properties by modulating electroactive \(\varvec{\beta }\)-phase of copper doped nickel oxide nanoparticles incorporated thin film. J Polym Res 31, 143 (2024). https://doi.org/10.1007/s10965-024-03979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03979-5

Keywords

Navigation