Skip to main content
Log in

Influence of nanoscale NiO on magnetic and electrochemical behavior of PVDF-based polymer nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

New poly(vinylidene fluoride) (PVDF)/NiO-based polymer nanocomposites were prepared by phase inversion method, using dimethyl formamide as solvent and deionized water as non-solvent. The structure and porous morphology of the membranes were studied by field emission scanning electron microscopy. The presence of NiO resulted in overall decrease in porosity and crystallinity of the nanocomposite membranes. Using electrochemical impedance spectroscopy, a maximum ionic conductivity of 1.08 × 10−3 S cm−1 was obtained for PVDF membrane with 1 wt% content of NiO. The good efficiency of conductivity observed in the membrane was explained on the basis of decrease in crystallinity and movement of charge carriers in NiO structure. The magnetization of nanocomposite membranes gradually increased with increase in NiO content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Croce F, Hassoun J, Tizzani C, Scrosati B (2006) Nanoporous composite, low cost, protonic membranes for direct methanol fuel cells. Electrochem Commun 8:1125–1131

    Article  CAS  Google Scholar 

  2. Abraham KM, Jiang Z (1997) PEO-like polymer electrolytes with high room temperature conductivity. J Electrochem Soc 144:L136–L13138

    Article  CAS  Google Scholar 

  3. Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 40:991–997

    Article  CAS  Google Scholar 

  4. Yoon HK, Chung WS, Jo NJ (2004) Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochim Acta 50:289–293

    Article  CAS  Google Scholar 

  5. Bottino A, Capannelli G, Comite A (2005) Novel porous poly (vinylidene fluoride) membranes for membrane distillation. Desalination 183:375–382

    Article  CAS  Google Scholar 

  6. Lin DJ, Beltsios K, Young TH, Jeng YS, Cheng LP (2006) Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly (vinylidene fluoride) membranes. J Membr Sci 274:64–72

    Article  CAS  Google Scholar 

  7. Tsuchida E, Ohno H, Tsunemi K (1983) Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I. Electrochim Acta 28:591–595

    Article  CAS  Google Scholar 

  8. Wang HP, Huang HT, Stephanie LW (2000) Novel microporous poly(vinylidene fluoride) blend electrolytes for lithium-ion batteries. J Electrochem Soc 147:2853–2861

    Article  CAS  Google Scholar 

  9. Jiang Z, Carroll B, Abraham KM (1997) Studies of some poly(vinylidene fluoride) electrolytes. Electrochim Acta 42:2667–2677

    Article  CAS  Google Scholar 

  10. Cao JH, Zhu BK, Xu YY (2006) Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J Membr Sci 281:446–453

    Article  CAS  Google Scholar 

  11. Lin DJ, Chang CL, Huang FM, Cheng LP (2003) Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/water/DMF/PVDF system. Polymer 44:413–422

    Article  CAS  Google Scholar 

  12. Kim HJ, Lee KH (1998) Effect of PEG additive on membrane formation by phase inversion. J Membr Sci 138:153–163

    Article  CAS  Google Scholar 

  13. Kumara GG, Kima P, Nahma KS, Elizabeth RN (2007) Structural characterization of PVdF-HFP/PEG/Al2O3 proton conducting membranes for fuel cells. J Membr Sci 303:126–131

    Article  Google Scholar 

  14. Sugimoto W, Ohnuma T, Murakami Y, Takasu Y (2001) Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors. Electrochem Solid State Lett 4:A145–A147

    Article  CAS  Google Scholar 

  15. Sato H, Minami T, Takata S, Yamada T (1993) Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236:27–31

    Article  CAS  Google Scholar 

  16. Qureshia A, Altindalb A, Mergen A (2009) Electrical and gas sensing properties of Li and Ti codoped NiO/PVDF thin film. Sens Actuators B 138:71–75

    Article  Google Scholar 

  17. Bhatt AS, Bhat DK, Santosh MS, Tai CW (2011) Chitosan/NiO nanocomposites: a potential new dielectric material. J Mater Chem. doi:10.1039/C1JM12011E

  18. van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31

    Article  Google Scholar 

  19. Choudhary NA, Shukla AK, Sampath S, Pitchumani P (2006) Cross-linked polymer hydrogel electrolytes for electrochemical capacitors. J Electrochem Soc 153:A614–A620

    Article  Google Scholar 

  20. Song S, Xiao P (2002) Electrical properties of the oxide film formed on nickel during high-temperature oxidation. Mat Sci Eng A 323:27–31

    Article  Google Scholar 

  21. Biju V, Khadar MA (2001) DC conductivity of consolidated nanoparticles of NiO. Mater Res Bull 36:21–33

    Article  CAS  Google Scholar 

  22. Adler D, Feinleib J (1970) Electrical and optical properties of narrow-band materials. Phys Rev B 2:3112–3134

    Article  Google Scholar 

Download references

Acknowledgments

Financial assistance in the form of an R&D project grant from DST, Govt. of India is gratefully acknowledged. ASB is thankful to NITK Surathkal for the award of a research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denthaje Krishna Bhat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, A.S., Bhat, D.K. Influence of nanoscale NiO on magnetic and electrochemical behavior of PVDF-based polymer nanocomposites. Polym. Bull. 68, 253–261 (2012). https://doi.org/10.1007/s00289-011-0628-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0628-3

Keywords

Navigation